CHAPTER 7

Stable-Linnik Processes and Generalizations

7.1 Introduction

Laplace distribution and its generalizations are of important consideration in statistical literature, because of the nice properties held by them. A widely used generalization of Laplace distribution is Linnik distribution (Linnik, 1953). A convolution of stable and Linnik

Some results included in this chapter form part of the paper Lishamol and Jose (2009).
(also known as \(\alpha\)-Laplace) distributions are significant in the same background, having the combined properties.

In this chapter, a convolution of stable and Linnik distributions is introduced. Stable-Linnik distribution is studied and its properties are discussed. The corresponding first order autoregressive processes are developed. Generalizations of stable-Linnik distribution namely, semi stable-Linnik, generalized semi stable-Linnik, geometric semi stable-Linnik, geometric generalized semi stable-Linnik, and bivariate semi stable-Linnik distribution are studied. Autoregressive processes corresponding to the generalizations are also discussed. Discrete stable-Linnik distribution and processes are developed.

7.2 Stable-Linnik Distribution

Stable-Linnik (StLi) distribution can be obtained as the convolution of stable and Linnik random variables. The characteristic function (cf) of StLi random variable is given by,

\[
\phi(t) = e^{-|t|^\alpha_1} \frac{1}{1 + |t|^\alpha_2}, \quad 0 < \alpha_1, \alpha_2 \leq 2.
\]

7.2.1 Properties of Stable-Linnik Distribution

1. Closed under linear transformations

Consider the linear transformation, \(Z = aX + b\). The cf of \(Z\) can be obtained as, \(\phi_Z(t) = \phi_{aX+b}(t) = e^{-|t|^\alpha_1 + ibt} \left(\frac{1}{1 + |at|^\alpha_2} \right)\), which is in the form of the cf in (7.2.1), and is a shewed
StLi random variable.

2. Infinite Divisibility

The cf in (7.2.1) can be rewritten as,

$$
\phi_X(t) = \left[e^{-\frac{|t|^\alpha_1}{\alpha_1}} \left(\frac{1}{1 + |t|^\alpha_2} \right)^\frac{1}{\pi} \right]^n
$$

for any integer $n > 0$. Here the term in square bracket is the cf of a generalized StLi (see Remark 7.2.1) random variable. Hence StLi is infinitely divisible (id). As StLi is a convolution of stable and Linnik distributions which is not geometrically infinitely divisible (gid), it follows that the StLi is not gid.

3. Self-decomposability

Consider the cf of StLi,

$$
\phi_X(t) = e^{-|t|^\alpha_1} \frac{1}{1 + |t|^\alpha_2}
$$

$$
= e^{-|at|^\alpha_1} \frac{1}{1 + |at|^\alpha_2}
$$

$$
\times e^{-(1-a^\alpha_1)|t|^\alpha_1} \left(\frac{1 + a^\alpha_2 |t|^\alpha_2}{1 + |t|^\alpha_2} \right)
$$

$$
= \phi_X(at) \phi_a(t)
$$

where $\phi_a(t)$ is a cf as in (7.3.2). Hence the StLi is self-decomposable.

4. Related Distributions

For various combinations of values of α_1 and α_2, we get many distributions as special cases. When $\alpha_1 = 2$, $\alpha_2 = 2$ it reduces to normal-Laplace distribution (Reed, 2004). If only $\alpha_2 = 2$ it reduces to stable-Laplace distribution. Some generalizations of StLi distributions can be obtained as follows:
Semi Stable-Linnik Distribution

Semi Stable-Linnik random variable is obtained as the convolution of semi-stable and semi Linnik random variables and is having the cf of the form

\[\phi_X(t) = e^{-\psi_1(t)} \frac{1}{1 + \psi_2(t)} \]
(7.2.2)

where \(\psi_i(t) \) satisfies certain conditions.

Definition 7.2.1. A distribution function \(F \) of a random variable \(X \) with cf in (7.2.2) is called semi stable-Linnik if \(\psi_j(t) \) of (7.2.2) satisfies the property

\[\psi_j(t) = c^j \psi_j(c^{1/\alpha_j} t), \quad 0 < \alpha_j \leq 2, \quad 0 < c < 1, \quad j = 1, 2. \]
(7.2.3)

A solution of the functional equation (7.2.3) can be obtained as, \(\psi_j(t) = |t|^{\alpha_j} h_j(t), \quad j = 1, 2 \) where \(h_j(t) \) is a periodic function in \(\ln t \) with period \(\frac{2\pi}{\ln \alpha_j} \). When \(\psi_j(t) = |t|^{\alpha_j} \), we have the StLi random variable.

Generalized Semi Stable-Linnik Distribution

Generalized semi stable-Linnik distribution is defined as the one with cf,

\[e^{-\psi_1(t)} \left[\frac{1}{1 + \psi_2(t)} \right]^\beta. \]

Remark 7.2.1. As a subclass of generalized semi stable-Linnik distribution, we can define generalized StLi distribution, when \(\psi_j(t) = |t|^{\alpha_j} \).

Bivariate Semi Stable-Linnik Distribution

The bivariate semi stable-Linnik distribution is obtained as the convolution of bivariate semi stable and bivariate semi Linnik distributions.

Definition 7.2.2. The distribution function of a random variable \(X \) is called bivariate
Chapter 7. Stable-Linnik Processes and Generalizations

A semi stable-Linnik if its cf is given by,

$$\phi(t_1, t_2) = e^{-\psi_1(t_1, t_2)} \frac{1}{1 + \psi_2(t_1, t_2)}$$

if $$\psi_j(t_1, t_2)$$ satisfies the property

$$\psi_j(t_1, t_2) = \frac{1}{a} \psi_j(a^{\frac{1}{\alpha_1}} t_1, a^{\frac{1}{\alpha_2}} t_2), \quad 0 < \alpha_1, \alpha_2 \leq 2, \quad 0 < a < 1.$$

7.3 Stable-Linnik Processes

Let $$\{\epsilon_n, \ n \geq 1\}$$ be a sequence of independently and identically distributed (iid) random variables. Define $$\{X_n, n \geq 1\}$$ by a first order autoregressive (AR(1)) model given by,

$$X_n = aX_{n-1} + \epsilon_n; \quad |a| < 1 \text{ and } \forall \ n > 0. \quad (7.3.1)$$

Here $$X_n$$ depends on $$X_0, \epsilon_1, \epsilon_2, \ldots, \epsilon_n$$ and is independent of $$\{\epsilon_i, i > n\}$$. Suppose that $$\{X_n\}$$ has the StLi distribution with cf (7.2.1). Then assuming stationarity, (7.3.1) satisfies the relation,

$$\phi_\epsilon(t) = \frac{\phi_X(t)}{\phi_X(at)}$$

and hence on substitution,

$$\phi_\epsilon(t) = e^{-(1-|a|^{\alpha_1})|t|^{\alpha_1}} \frac{1 + |at|^{\alpha_2}}{1 + |t|^{\alpha_2}}. \quad (7.3.2)$$

Remark 7.3.1. A random variable which has an atom of mass ‘a’ at 0 and which is Linnik distributed with probability $$(1 - a)$$ for non-zero values is called Linnik tailed random variable.

Hence $$\epsilon$$ is a convolution of stable and Linnik tailed random variables, where the Linnik tailed random variable has an atom of mass $$|a|^{\alpha_2}$$ at 0 and is Linnik distributed for non-zero values.
7.3.1 Properties of Stable-Linnik Processes

1. The distribution of ϵ can be obtained as a mixture distribution given by,

$$
\epsilon = \begin{cases}
Y & \text{with probability } |a|^{\alpha_2} \\
X & \text{with probability } (1 - |a|^{\alpha_2})
\end{cases}
$$

where Y is stable distribution and X is StLi. Hence the probability density function (pdf) of ϵ can be obtained as,

$$
g_{\epsilon}(x) = |a|^{\alpha_2}f_Y(x) + (1 - |a|^{\alpha_2})f_X(x).
$$

2. Since the distribution of ϵ has no zero component, the StLi model is free from zero deficiency.

3. The AR(1) process $X_n = aX_{n-1} + \epsilon_n$, $|a| < 1$ is strictly stationary with StLi marginal distribution with cf as in (7.2.1) if and only if $\{\epsilon_n\}$ are iid with cf as defined in (7.3.2) provided $X_0 \sim$ StLi and is independent of ϵ_1.

4. If X_0 is distributed arbitrarily, then also the process is asymptotically Markovian with StLi distribution, provided ϵ is as in (7.3.2).

5. If $T_r = X_n + X_{n+1} + \cdots + X_{n+r-1}$, then the distribution of T_r is uniquely determined by the cf,

$$
\phi_{T_r}(t) = \phi_{X_n} \left(\frac{1 - a^r}{1 - a} t \right) \prod_{j=1}^{r-1} \phi_{\epsilon} \left(\frac{1 - a^{r-j}}{1 - a} t \right)
$$

$$
= e^{-\frac{|1-a^r|t^{\alpha_1}}{1+|1-a^r|t^{\alpha_2}}} \prod_{j=1}^{r-1} e^{-\frac{(1-|a|^\alpha_1)|1-a^{r-j}|t^{\alpha_1}}{1+|1-a^{r-j}|t^{\alpha_2}}} \left(\frac{1 + |a|^{1-a^{r-j}}t^{\alpha_2}}{1 + |1-a^{r-j}|t^{\alpha_2}} \right).
$$

6. The joint distribution of contiguous observations (X_n, X_{n+1}) of the process can be
obtained in terms of the bivariate ϕ,
\[
\phi_{X_n, X_{n+1}}(t) = e^{-(t_1 + at_2)^{\alpha_1} + (1-|a|^{\alpha_1})|t_2|^{\alpha_1}} \left(\frac{1 + |at_2|^{\alpha_2}}{(1 + |t_1 + at_2|^{\alpha_2})(1 + |t_2|^{\alpha_2})} \right).
\]

The obtained expression is not symmetric in t_1 and t_2. Hence it follows that the process with StLi marginals is not time reversible.

7.3.2 Geometric Semi Stable-Linnik Distribution and Processes

We have the StLi distribution and hence the semi stable-Linnik distributions are id. Now,

\[
e^{-\psi_1(t)} \frac{1}{1 + \psi_2(t)} = \exp \left\{ 1 - \frac{1}{\left[1 + \psi_1(t) + \log(1 + \psi_2(t)) \right]^{-1}} \right\}.
\]

Hence $\frac{1}{1 + \psi_1(t) + \log(1 + \psi_2(t))}$ is gid (Klebanov et al., 1984).

A distribution with $\phi = \frac{1}{1 + \psi_1(t) + \log(1 + \psi_2(t))}$ is called geometric semi stable-Linnik distribution.

Like semi stable-Linnik distribution mentioned above, the geometric generalized semi stable-Linnik distribution corresponding to generalized semi stable-Linnik distribution is obtained as the one with ϕ,

\[
\frac{1}{1 + \psi_1(t) + \beta \log (1 + \psi_2(t))}
\]

Remark 7.3.2. Geometric StLi distribution can be defined as the distribution with ϕ and the $\phi = \frac{1}{1 + |t|^{\alpha_1 + \beta \log (1 + |t|^{\alpha_2})}}$ corresponds to geometric generalized StLi distribution.

Theorem 7.3.1. Geometric semi stable-Linnik distribution is the limit distribution of geometric sum of generalized semi stable-Linnik variables.

Proof:

\[
\phi_n(t) = \left\{ 1 + n \left[\left(\frac{1 + \psi_2(t)}{e^{-\psi_1(t)}} \right)^{\frac{1}{n}} - 1 \right] \right\}^{-1}.
\]

(7.3.3)

By Lemma 3.2 of Pillai (1990), (7.3.3) is the ϕ of the geometric sum of iid generalized
semi stable-Linnik variables. Taking limit as $n \to \infty$,

$$
\phi(t) = \lim_{n \to \infty} \phi_n(t)
= \left\{ 1 + \lim_{n \to \infty} n \left[\left(\frac{1 + \psi_2(t)}{e^{-\psi_1(t)}} \right)^{\frac{1}{n}} - 1 \right] \right\}^{-1}
= \frac{1}{[1 + \psi_1(t) + \log(1 + \psi_2(t))]}.
$$

Then for the geometric generalized semi stable-Linnik distribution we have the following theorem.

Theorem 7.3.2. Geometric generalized semi stable-Linnik distribution is the limit distribution of geometric sum of generalized semi stable-Linnik variables.

Proof: By Lemma 3.2 of Pillai (1990), following is the cf of the geometric sum of iid generalized semi stable-Linnik variables.

$$
\phi_n(t) = \left\{ 1 + n \left[\left(\frac{1 + \psi_2(t)}{e^{-\psi_1(t)}} \right)^{\frac{1}{n}} - 1 \right] \right\}^{-1}.
$$

Then by taking limit as $n \to \infty$ of $\phi_n(t)$, the theorem follows.

For the first order autoregressive processes with geometric semi stable-Linnik as marginals, the following structure for $\{X_n\}$ is considered.

$$
X_n = \begin{cases}
\epsilon_n, & \text{with probability } p \\
X_{n-1} + \epsilon_n, & \text{with probability } 1 - p.
\end{cases} \tag{7.3.4}
$$

In terms of cf the model defined in (7.3.4) can be given as

$$
\phi_{X_n}(t) = p\phi_{\epsilon_n}(t) + (1 - p)\phi_{X_{n-1}}(t) \phi_{\epsilon_n}(t). \tag{7.3.5}
$$
Assuming stationarity, we have
\[\phi_\epsilon(t) = \frac{\phi_X(t)}{p + (1 - p)\phi_X(t)} = \frac{1}{[1 + p\psi_1(t) + p\log (1 + \psi_2(t))]} . \]

Hence the innovation sequence \(\{\epsilon_n\} \) is distributed \(iid \) as geometric generalized semi stable-Linnik if and only if \(\{X_n\} \) is distributed marginally as geometric semi stable-Linnik.

Now we construct an AR(1) model with geometric generalized semi stable-Linnik marginals. Consider an autoregressive process \(\{X_n\} \) with structure given by (7.3.4). Suppose that \(\{X_n\} \) has the geometric generalized semi stable-Linnik distribution. Then with the assumption of stationarity, (7.3.5) gives
\[\phi_\epsilon(t) = \frac{1}{[1 + p\psi_1(t) + p\beta \log (1 + \psi_2(t))]} . \]

Hence \(\{\epsilon_n\} \) also is distributed as geometric generalized semi stable-Linnik.

7.3.3 Stable-Gamma distribution and Processes

The stable-gamma distribution (SG) results from the convolution of independent stable and gamma components. In terms of \(cf \), the SG can be defined as which, for all real \(x \) is,
\[\phi_X(t) = e^{i\mu t - \frac{c}{2}t^\alpha (1 + i\gamma \frac{c}{2}t^\alpha \omega(t, \alpha))} \left(\frac{1}{1 - i\lambda_1 t} \right)^{\beta_1} \left(\frac{1}{1 + i\lambda_2 t} \right)^{\beta_2} \]
where \(\mu, \alpha, \gamma \) and \(c \) are constants with \(c \geq 0, \ 0 < \alpha \leq 2, \ |\gamma| \leq 1 \) and
\[\omega(t, \alpha) = \begin{cases} \tan \frac{\pi \alpha}{2} & \text{if } \alpha \neq 1 \\ \frac{2}{\pi} \ln |t| & \text{if } \alpha = 1 \end{cases} \]
We shall write \(X \sim SG(\mu, \alpha, \gamma, c, \lambda_1, \lambda_2, \beta_1, \beta_2) \) to indicate that a random variable \(X \) has such a distribution. For convenience we are considering the form,

\[
\phi_X(t) = e^{-ct|t|^\alpha} \left(\frac{1}{1 - i\lambda_1 t} \right)^{\beta_1} \left(\frac{1}{1 + i\lambda_2 t} \right)^{\beta_2}.
\] (7.3.6)

That is, we are considering the random variable, \(X \sim SG(0, \alpha, 0, c, \lambda_1, \lambda_2, \beta_1, \beta_2) \). Since it is a convolution, \(X \) can be represented as,

\[X \overset{d}{=} Y + G_1 - G_2 \]

Where \(Y, G_1 \) and \(G_2 \) are independent random variables with \(Y \) is stable, denoted by \(Y \sim S(0, \alpha, 0, c) \), \(G_1 \) and \(G_2 \) are independent gamma with parameters \((\lambda_1, \beta_1)\) and \((\lambda_2, \beta_2)\) respectively. Hence \(\phi_X(t) \) in (7.3.6) is the product of the cf's of its stable and gamma components.

Remark 7.3.3. It can be proved that the SG distribution is

1. Closed under linear transformations
2. Infinitely Divisible
3. Self-decomposable
4. Asymmetric

Proof: These properties can be easily proved in a way similar to the one that considered for the properties of StLi distributions.

For \(\lambda_1 = \lambda_2 = \lambda \) and \(\beta_1 = \beta_2 = \beta \), SG is symmetric and in that case the cf is,

\[
\phi_X(t) = e^{-ct|t|^\alpha} \left(\frac{1}{1 + \lambda^2 t^2} \right)^\beta.
\]

As a convolution, it can be expressed as \(X \overset{d}{=} Y + L \) where \(Y \) and \(L \) are independent.
stable and symmetric generalized Laplace (Refer Mathai, 1993a,b) random variables respectively.

Remark 7.3.4. For various combinations of values of \(\alpha, \beta_1 \) and \(\beta_2 \), we get many distributions as special cases. When \(\alpha = 2, \beta_1 = \beta_2 = \beta \) it reduces to generalized normal-Laplace distribution (Reed, 2004). If only \(\beta_1 = \beta_2 = \beta \) it reduces to generalized stable-Laplace distribution. For \(\alpha = 2, \beta_1 = \beta_2 = 1 \) it reduces to stable-Laplace distribution. For \(\alpha = 2, \beta_1 = \beta_2 = 1 \) it reduces to normal-Laplace distribution (Reed and Jorgensen, 2004).

The first order stable-gamma autoregressive process (SGAR(1)) is constituted by \(\{X_n, n \geq 1\} \) where \(X_n \) satisfies the AR(1) model \(X_n = aX_{n-1} + \epsilon_n, a \in (0, 1) \) with \(\{\epsilon_n\} \) is a sequence of iid random variables such that \(X_n \) is stationary Markovian with SG marginal distribution. On assuming stationarity, the cf of the innovation sequence, \(\{\epsilon_n\} \) can be obtained as,

\[
\phi_\epsilon(t) = e^{-\lambda(1-a^\alpha)} |t|^{\beta_1} \left(\frac{1 - i\lambda_1 a t}{1 - i\lambda_1 t} \right)^{\beta_1} \left(\frac{1 + i\lambda_2 a t}{1 + i\lambda_2 t} \right)^{\beta_2} \tag{7.3.7}
\]

Hence, \(\{\epsilon_n\} \) can be regarded as the convolution of stable and generalized exponential tailed random variables.

7.4 Discrete Stable-Linnik Distribution and Processes

Consider a convolution of a discrete stable random variable \(X \ (DS(\lambda, \gamma)) \) and a discrete generalized Linnik random variable \(Y \ (L(\theta, \alpha, \beta)) \) given by

\[
U = X + Y
\]

where \(X \) and \(Y \) are independent. The probability generating function \((pgf) \) of \(U \) is given by

\[
P_U(s) = e^{-\lambda(1-s)^{\gamma}(1 + \theta(1 - s)^{\alpha})^{-\beta}} \tag{7.4.1}
\]
where \(|s| \leq 1, \lambda > 0, \gamma \in (0, 1), \alpha \in (0, 1), \beta > 0, \theta > 0\). The random variable having the above pgf is named herein as Discrete Stable-Generalized Linnik (DStLi) random variable. When \(\gamma = 1, \beta = 1\), reduces to the Poisson-discrete Mittag-Leffler distribution.

The first order integer valued autoregressive (INAR(1)) process is defined by the model structure,

\[
U_n = a \ast U_{n-1} + \epsilon_n, n \in \mathbb{Z}, a \in [0, 1] \tag{7.4.2}
\]

where \(U\) is a non-negative integer valued random variable, \(\{\epsilon_n\}\) is sequence of uncorrelated non-negative integer valued random variables and \(\ast\) denotes the binomial thinning operator defined by,

\[
a \ast U = \sum_{i=1}^{U} Y_i
\]

where \(Y_i\) is a sequence of iid random variables independent of \(U\), such that \(P[Y_i = 1] = 1 - P[Y_i = 0] = a\).

Theorem 7.4.1. Let \(P(s)\) be the pgf of a DStLi distribution with \(\lambda > 0, \gamma \in (0, 1), \alpha \in (0, 1), \beta > 0, \theta > 0, a \in (0, 1)\). There exists a stationary INAR(1) process \(\{U_n, n \in \mathbb{Z}\}\) with \(P(s)\) as the pgf of its marginal distribution. Also the marginal distribution of the innovation sequence \(\{\epsilon_n, n \in \mathbb{Z}\}\) has pgf \(P_\epsilon(s)\) given by

\[
P_\epsilon(s) = \frac{e^{-\lambda s^\gamma} (1 + \theta s^\alpha)^{-\beta}}{e^{-\lambda a s^\gamma} (1 + \theta a^\alpha s^\alpha)^{-\beta}}.
\]

Proof: In terms of alternate probability generating function (apgf) defined as \(G(s) = P(1 - s)\), the INAR(1) model defined in (7.4.2) can be rewritten as,

\[
G_{U_n}(s) = G_{U_{n-1}}(as)G_{\epsilon_n}(s).
\]

Under stationarity it reduces to,

\[
G_U(s) = G_U(as)G_\epsilon(s).
\]
Hence,
\[G_\epsilon(s) = \frac{G_U(s)}{G_U(as)}. \]

The INAR(1) process with DStLi marginals is defined, if there exists an innovation sequence \(\{\epsilon_n\} \) such that \(G_\epsilon(s) \) is an apgf.

From (7.4.1),
\[G_U(s) = e^{-\lambda s^\gamma (1 + \theta s^\alpha)^{-\beta}}. \]

Then we have
\[G_\epsilon(s) = \frac{e^{-\lambda s^\gamma (1 + \theta s^\alpha)^{-\beta}}}{e^{-\lambda a s^\gamma s^\alpha (1 + \theta a s^\alpha)^{-\beta}}} = e^{-\lambda(1-a) s^\gamma} \left(s^\alpha + (1-a)^\alpha \frac{1}{1+\theta s^\alpha} \right)^\beta. \]

Therefore, \(\{\epsilon_n\} \) has the convolution structure,

\[\epsilon_n = W_n + V_n \]

where \(W_n \) follows discrete stable \(DS(\lambda(1-a)^\gamma), \gamma) \) and \(V_n \) is a \(\beta \)-fold convolution of discrete Mittag-Leffler tailed random variable \(ML_T(a^\alpha, \theta, \alpha, \beta) \).

For checking the time reversibility of the process, since the process is Markovian, it is sufficient to determine the joint distribution of \((U_{n-1}, U_n) \). The joint pgf of \((U_{n-1}, U_n) \) is given by,

\[
P_{U_{n-1}, U_n}(s_1, s_2) = E(s_1^{U_{n-1}} s_2^{U_{n-1}+\epsilon_n})
= P_{\epsilon_n}(s_2) P_{U_{n-1}}(s_1(1-a+as_2))
= e^{-\lambda(1-a) s_2^\gamma} \left(1 + \theta a^\alpha s_2^\alpha \right)^\beta e^{-\lambda(1-s_1(1-a+as_2)) s_2^\gamma} \left(1 + \theta(1 - s_1(1-a+as_2))^\alpha \right)^\beta.
\]

As the obtained expression is not symmetric in \(s_1 \) and \(s_2 \), the INAR(1) process is not time reversibly.
reversible and hence the backward regression would be of interest.

By differentiating $P_{U_{n-1}, U_n}(s_1, s_2)$ with respect to s_1 and setting $s_1 = 0$,

$$E(U_{n-1}s_2^{U_n}) = (1 - a + as_2) \left(\lambda \gamma + \frac{\alpha \beta \theta}{(1 + \theta)} \right) e^{-\lambda((1-a)\gamma)s_2 + 1} \left(\frac{1 + \theta_\alpha s_2^\alpha}{(1 + \theta s_2^\alpha)(1 + \theta)} \right) \beta.$$ \tag{7.4.4}

But

$$E(U_{n-1}s_2^{U_n}) = \sum_{m=0}^{\infty} s_2^m E(U_{n-1}|U_n = m) P(U_n = m).$$

Hence $E(U_{n-1}|U_n = m)$ can be obtained from the coefficient of s_2^m in the expansion of right hand side of (7.4.4).

7.4.1 INAR(p) Processes

Here we define a p^{th} order integer valued AR (INAR(p)) with the probability structure,

$$U_n = \begin{cases}
 a_1 * U_{n-1} + \epsilon_n, & \text{with probability } \delta_1 \\
 a_2 * U_{n-2} + \epsilon_n, & \text{with probability } \delta_2 \\
 \vdots \\
 a_p * U_{n-p} + \epsilon_n, & \text{with probability } \delta_p
\end{cases} \tag{7.4.5}$$

where $0 < a_i, \delta_i < 1, i = 1, \ldots, p, \sum_{i=1}^{p} \delta_i = 1$.

In terms of $apgf$, (7.4.5) can be rewritten as,

$$G_{U_n}(s) = G_{\epsilon_n}(s) \left[\sum_{i=1}^{p} \delta_i G_{U_{n-i}}(a_i s) \right].$$

Assuming stationarity,

$$G_{U}(s) = G_{\epsilon}(s) \left[\sum_{i=1}^{p} \delta_i G_{U}(a_i s) \right].$$
Hence,
\[G_\epsilon(s) = \frac{G_U(s)}{\sum_{i=1}^{p} \delta_i G_U(a_i s)} . \]

For the DStLi marginals, the innovation sequence of the process has apgf,
\[G_\epsilon(s) = \frac{e^{-\lambda s^\gamma} (1 + \theta s^\alpha)^{-\beta}}{\sum_{i=1}^{p} \delta_i e^{-\lambda a_i^\gamma s^\gamma} (1 + \theta a_i^\alpha s^\alpha)^{-\beta}}. \]
\[(7.4.6) \]

For the particular case of \(a_i = a \), for \(i = 1, \ldots, p \), (7.4.6) yields the apgf defined in (7.4.3).

Hence with an error sequence \(\{\epsilon_n\} \) distributed as the convolution of discrete stable and convolution of Mittag-Leffler tailed random variables, the \(p^{th} \) order discrete stable-Linnik autoregressive processes are properly defined.

7.5 Conclusion

In this chapter, generalizations of the distributions and processes developed in the previous chapters are done. Thus, it gives a generalization of the Gaussian non-Gaussian autoregressive processes. Hence, those Gaussian non-Gaussian models are extended to the more general class stable non-Gaussian processes viz., semi stable-Linnik autoregressive models. This model contains a wide variety of time series models as special cases, including the normal-Laplace model. We have also developed integer valued stable-Linnik processes in this final chapter of the present thesis. The problems which are unsolved and remained unexplored in the present work are the areas for further research in future.

References

