LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Complex formed in the presence of sulphur donors</td>
<td>25</td>
</tr>
<tr>
<td>1.2</td>
<td>Typical rheograph showing different stages on curing</td>
<td>37</td>
</tr>
<tr>
<td>1.3</td>
<td>Rheograph showing different behaviour in modulus development</td>
<td>38</td>
</tr>
<tr>
<td>1.4</td>
<td>Features of NR vulcanisate produced by an efficient crosslinking system</td>
<td>42</td>
</tr>
<tr>
<td>1.5</td>
<td>Features of NR vulcanisate produced by a conventional crosslinking system</td>
<td>42</td>
</tr>
<tr>
<td>2.1</td>
<td>IR-spectrum of o-DTB</td>
<td>76</td>
</tr>
<tr>
<td>2.2</td>
<td>IR-spectrum of p-DTB</td>
<td>77</td>
</tr>
<tr>
<td>2.3</td>
<td>IR-spectrum of m-DTB</td>
<td>78</td>
</tr>
<tr>
<td>2.4</td>
<td>H-NMR of o-DTB</td>
<td>80</td>
</tr>
<tr>
<td>2.5</td>
<td>H-NMR of p-DTB</td>
<td>81</td>
</tr>
<tr>
<td>2.6</td>
<td>H-NMR of m-DTB</td>
<td>82</td>
</tr>
<tr>
<td>2.7</td>
<td>A typical rheograph from Monsanto Rheometer (R-100)</td>
<td>83</td>
</tr>
<tr>
<td>2.8</td>
<td>Experimental set up for preparation of double networks.</td>
<td>86</td>
</tr>
<tr>
<td>3.1</td>
<td>The cure curves of mixes A1, O1, O2 and O3</td>
<td>103</td>
</tr>
<tr>
<td>3.2</td>
<td>The cure curves of mixes A1, P1, P2 and P3</td>
<td>104</td>
</tr>
<tr>
<td>3.3</td>
<td>The cure curves of mixes A1, M1, M2 and M3</td>
<td>104</td>
</tr>
<tr>
<td>3.4</td>
<td>The variation in the optimum cure time and scorch time of various mixes containing MBS and o-DTB</td>
<td>106</td>
</tr>
<tr>
<td>3.5</td>
<td>The variation in the optimum cure time and scorch time of various mixes containing MBS and p-DTB</td>
<td>106</td>
</tr>
<tr>
<td>3.6</td>
<td>The variation in the optimum cure time and scorch time of various mixes containing MBS-m-DTB systems</td>
<td>107</td>
</tr>
<tr>
<td>3.7</td>
<td>The variation of the tensile strength of the vulcanisates with the concentration of DTBs</td>
<td>110</td>
</tr>
<tr>
<td>3.8</td>
<td>Stress-strain curves of MBS-DTB vulcanisates</td>
<td>110</td>
</tr>
<tr>
<td>3.9</td>
<td>Effect of thermal ageing on 300% modulus of NR vulcanisates with the concentration of DTBs</td>
<td>111</td>
</tr>
</tbody>
</table>
3.10. Effect of thermal ageing on the elongation at break of NR vulcanisates with the concentration of DTBs 111
3.11. Variation of storage modulus with temperature of MBS -DTB vulcanisates 115
3.12 Variation of loss modulus with temperature of MBS -DTB vulcanisates 115
3.13 Tan δ versus temperature curves of MBS-DTB vulcanisates 116
4.1. Rheographs of the CBS/ α-DTB mixes. 127
4.2. Rheographs of the CBS/ p-DTB mixes 127
4.3. Rheographs of the CBS/ m-DTB mixes 128
4.4. Stress-strain curves for CBS/DTB cured vulcanisates 130
4.5. Effect of thermal ageing on the tensile strength of the vulcanisates with the concentration of DTBs 132
4.6. Effect of thermal ageing on 300% modulus of NR vulcanisates 133
4.7. Effect of thermal ageing on the elongation at break of NR vulcanisates with the concentration of DTBs 133
4.8. Variation of loss modulus with temperature of DTB/CBS cured vulcanisates 136
4.9. Variation of loss tangent with temperature of CBS/DTB cured vulcanisates 136
4.10. The variation of tensile strength with filler loading for CBS/DTB cured NR vulcanisates 141
4.11. The variation of 300% modulus with filler loading for CBS/DTB cured NR vulcanisates 142
4.12 The variation of elongation at break with filler loading for CBS/DTB cured NR vulcanisates 143
5.1. The cure curves of mixes A₁, O₁, O₂ and O₃ 152
5.2. The cure curves of mixes A₁, P₁, P₂ and P₃ 152
5.3. The cure curves of mixes A₄, M₁, M₂ and M₃ 153
5.4. Stress-strain curves of DCBS-DTB vulcanisates 155
5.5. Effect of thermal ageing on the tensile strength of the vulcanisates 156
5.6. Effect of thermal ageing on 300% modulus of NR vulcanisates 157
5.7. Effect of thermal ageing on the elongation at break of NR vulcanisates with the concentration of DTBs 158
6.1. The cure curves of mixes A₁, A₂, O₁, O₂ and O₃ 173
6.2. The cure curves of mixes DA₁, DA₂, DO₁, DO₂ and DO₃ 173
6.3. The cure curves of mixes DP₁, DP₂ and DP₃ 174
6.4. The cure curves of mixes DM₁, DM₂ and DM₃ 174
6.5. Stress-strain curves of MBS/DTB cured SBR vulcanisates 179
6.6. Stress-strain curves of DCBS/DTB cured SBR vulcanisates 179
6.7. The variation of tensile strength with filler loading for DCBS/DTB cured SBR vulcanisates 189
6.8. The variation of 300% Modulus with filler loading for DCBS/DTB cured SBR vulcanisates 189
6.9. The Variation of elongation at break with filler loading for DCBS/DTB cured SBR vulcanisates 191
7.1. The cure curves of mixes A₁, A₂, O₁, O₂ and O₃ 201
7.2. The cure curves of mixes P₁, P₂ and P₃ 201
7.3. The cure curves of mixes M₁, M₂ and M₃ 202
7.4. The cure curves of mixes DA₁, DA₂, DO₁, DO₂ and DO₃ 202
7.5. The cure curves of mixes DP₁, DP₂ and DP₃ 203
7.6. The cure curves of mixes DM₁, DM₂ and DM₃ 203
7.7. The Stress-strain curves of MBS-DTB vulcanisates 205
7.8. Effect of thermal ageing on the tensile strength of the vulcanisates with the concentration of DTBs 206
7.9. Effect of thermal ageing on 300% modulus of vulcanisates 206
7.10. Effect of thermal ageing on the elongation at break of NR vulcanisates with the concentration of DTBs 207
7.11 The Variation of tensile strength with filler loading for the NR/SBR blend 214
7.12 The Variation of 300% Modulus with filler loading for the NR/SBR blend 214
7.13 The Variation of elongation at break with filler loading for the NR/SBR blend. 215
8.1. Variation of tensile strength with time for TMTD–DTB systems at 120°C 224
8.2. Variation of tensile strength with cure time for ZDC–DTB systems at 120°C 229
9.1. (a) uncrosslinked network (b) initial crosslinked network (c) extended network (d) secondary crosslinks (e) relaxed state after double network formation 242
9.2 Stress-strain curves of double networked parallel samples prepared using CBS 246
9.3 Stress-strain curves of double networked parallel samples prepared using DCBS 249
9.4 Effect of residual extension ratio on toluene sorption curves of double networked parallel samples prepared using CBS 250
9.5 Effect of residual extension ratio on toluene sorption curves of double networked parallel samples prepared using DCBS

9.6 The variation of equilibrium solvent uptake with residual extension ratio of double networked samples cured using CBS

9.7 The variation of equilibrium solvent uptake with residual extension ratio of double networked samples cured using DCBS

9.8 Swelling variation as a function of the angle of measurement θ, for double networked samples cured using CBS

9.9 Swelling variation as a function of the angle of measurement, θ, for double networked samples cured using DCBS

9.10 Effect of thermal ageing on the tensile strength of double networked samples cured using DCBS alone

9.11 Effect of thermal ageing on the tensile strength of double networked samples cured by binary accelerator system

9.12 Variation of storage modulus with temperature on double networked samples

9.13 Variation of loss modulus with temperature on double networked samples

9.14 Tanδ versus temperature curves of double networked samples

9.15 Tanδ in the rubbery region versus residual strain for double networked samples cured with DCBS accelerator system