LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phosphate solubilizing microorganisms</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>Organic acids produced by phosphate solubilizing microorganisms</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>Plant growth promoting metabolites from phosphate solubilizing microorganisms</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>Plant growth promotion by phosphate solubilizing microorganisms</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>Rhizosphere soil samples used for the isolation of phosphate solubilizing bacteria</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>Plasmid isolation kit.</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>Pesticides and concentrations</td>
<td>83</td>
</tr>
<tr>
<td>8</td>
<td>Screening of phosphate solubilizing bacteria</td>
<td>98</td>
</tr>
<tr>
<td>9</td>
<td>Secondary screening of phosphate solubilizing bacteria</td>
<td>101</td>
</tr>
<tr>
<td>10</td>
<td>Secondary screening of phosphate solubilizing bacteria in NBRIP-BPB medium</td>
<td>102</td>
</tr>
<tr>
<td>11</td>
<td>Morphological tests</td>
<td>103</td>
</tr>
<tr>
<td>12</td>
<td>Physiological tests</td>
<td>104</td>
</tr>
<tr>
<td>13</td>
<td>Biochemical tests</td>
<td>105</td>
</tr>
<tr>
<td>14</td>
<td>GN2 Micro Plate™</td>
<td>106</td>
</tr>
<tr>
<td>15</td>
<td>Substrate utilization pattern of Gluconacetobacter sp.</td>
<td>107</td>
</tr>
<tr>
<td>16</td>
<td>Substrate utilization pattern of Burkholderia sp.</td>
<td>108</td>
</tr>
<tr>
<td>17</td>
<td>Effect of pH on solubilization of tricalcium phosphate</td>
<td>117</td>
</tr>
<tr>
<td>18</td>
<td>Effect of temperature on solubilization of tricalcium phosphate</td>
<td>118</td>
</tr>
<tr>
<td>19</td>
<td>Effect of carbon sources on solubilization of tricalcium phosphate</td>
<td>120</td>
</tr>
<tr>
<td>20</td>
<td>Effect of nitrogen sources on solubilization of tricalcium phosphate</td>
<td>122</td>
</tr>
<tr>
<td>21</td>
<td>Effect of glucose concentration on solubilization of tricalcium phosphate</td>
<td>123</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>22</td>
<td>Effect of sodium chloride concentration on solubilization of tricalcium phosphate</td>
<td>125</td>
</tr>
<tr>
<td>23</td>
<td>Optimization of physiological factors for efficient P solubilization</td>
<td>133</td>
</tr>
<tr>
<td>24</td>
<td>Effect of buffering on selected isolates of phosphate solubilizing bacteria</td>
<td>135</td>
</tr>
<tr>
<td>25</td>
<td>Pesticide tolerance of Gluconacetobacter sp.</td>
<td>136</td>
</tr>
<tr>
<td>26</td>
<td>Pesticide tolerance of Burkholderia sp.</td>
<td>137</td>
</tr>
<tr>
<td>27</td>
<td>Phosphate solubilization in pesticide containing media.</td>
<td>138</td>
</tr>
<tr>
<td>28</td>
<td>In vitro effect of phosphate solubilizing bacteria against phytopathogenic fungi</td>
<td>141</td>
</tr>
<tr>
<td>29</td>
<td>Plant growth promoting characters of the isolates</td>
<td>142</td>
</tr>
<tr>
<td>30</td>
<td>Changes in total microbial count (x10^5 CFU/ml) in rice rhizosphere as influenced by PSB inoculation</td>
<td>145</td>
</tr>
<tr>
<td>31</td>
<td>Changes in population of PSB (x10^6 CFU/ml) in rice rhizosphere as influenced by PSB inoculation</td>
<td>146</td>
</tr>
<tr>
<td>32</td>
<td>Changes in phosphatase activity (µg PNP g⁻¹ soil) in rice rhizosphere as influenced by PSB inoculation</td>
<td>148</td>
</tr>
<tr>
<td>33</td>
<td>Changes in dehydrogenase activity (µg TPF g⁻¹ soil/day) in rice rhizosphere as influenced by PSB inoculation</td>
<td>149</td>
</tr>
<tr>
<td>34</td>
<td>Changes in soil available P (Kg/ha) during different stages of rice growth</td>
<td>151</td>
</tr>
<tr>
<td>35</td>
<td>Phosphorus uptake (mg/plant) by rice crop as influenced by PSB inoculation</td>
<td>152</td>
</tr>
<tr>
<td>36</td>
<td>Nitrogen uptake (mg/plant) by rice crop as influenced by PSB inoculation</td>
<td>154</td>
</tr>
<tr>
<td>37</td>
<td>Dry matter and grain yield of rice crop (gm/plant) as influenced by PSB inoculation</td>
<td>155</td>
</tr>
<tr>
<td>38</td>
<td>Effect of PSB inoculation on plant yield parameters of rice</td>
<td>157</td>
</tr>
</tbody>
</table>