CONTENTS

ACKNOWLEDGEMENT ... i
CONTENTS .. iii
LIST OF FIGURES ... vii
LIST OF TABLES ... xvi
CHAPTER-1 GENERAL INTRODUCTION 1
 1.1 BACKGROUND AND MOTIVATION 2
 1.2 AIMS AND OBJECTIVES ... 3
 1.3 THESIS LAYOUT .. 4
CHAPTER-2 LITERATURE SURVEY .. 6
 2.1 CHITOSAN ... 6
 2.2 CHITOSAN-BASED HYDROGEL POLYMERIC BEADS 10
 2.2.1 Pure chitosan beads ... 11
 2.2.2 Chitosan / natural polymer beads 12
 2.2.2.1 Chitosan alginate beads 12
 2.2.2.2 Chitosan/gelatin beads 14
 2.2.2.3 Chitosan/methyl cellulose beads 14
 2.2.2.4 Chitosan / carboxy methyl konjac gluomannan
 beads ... 15
 2.2.3 Chitosan – synthetic polymer beads 16
 2.2.3.1 Chitosan – poly (ethylene glycol) beads 16
 2.2.3.2 Chitosan - poly (ethylene oxide) beads 17
 2.2.3.3 Chitosan – β – glycerol phosphate beads 18
 2.2.3.4 Chitosan –poly acrylic acid beads 19
 2.2.3.5 Chitosan –poly (ethylene oxide-g-acryl amide)
 beads ... 19
 2.2.3.6 Chitosan –acrylamide –poly (vinyl alcohol)
 beads .. 20
 2.2.3.7 Chitosan–poly (vinyl pyrrolidone) beads 20
 2.2.4 Chitosan derivatives beads 21
 2.2.4.1 Chitosan O - derivatives 21
 2.2.4.2 Chitosan N - derivatives 22
 2.2.4.3 Other derivatives of chitosan 23
 2.2.5 Crosslinked chitosan network beads with spacer groups
 2.2.5.1 Techniques .. 25
2.3 DRUG LOADING 26
2.4 FACTORS AFFECTING DRUG LOADING CAPACITY IN CHITOSAN BASED HYDROGEL POLYMERIC BEADS 28
 2.4.1 Nature of drug 28
 2.4.2 Chitosan concentration 28
 2.4.3 Drug polymer ratio 29
 2.4.4 Stirring 29
2.5 DRUG RELEASE 29
2.6 FACTORS AFFECTING THE DRUG RELEASE 31
 2.6.1 Effect of molecular weight of chitosan 31
 2.6.2 Effect of concentration of chitosan 32
 2.6.3 Effect of drug content in the microspheres 32
 2.6.4 Physical state of the drug in the microspheres 33
 2.6.5 Effect of crosslinked density 33
 2.6.6 Effect of additives 35
2.7 KINETICS OF DRUG RELEASE 36
 2.7.1 Zero order model 36
 2.7.2 First order model 36
 2.7.3 Higuchi’s model 36
 2.7.4 Hixon Crowell model 37
 2.7.5 Weibull distribution model 37
 2.7.6 Korsmeyer and Peppas model 38
2.8 PHARMACEUTICAL APPLICATIONS 38
 2.8.1 Drug delivery to colon 38
 2.8.2 Mucosal delivery 39
 2.8.3 Nasal delivery 40
 2.8.4 Gastro enteric delivery 41
 2.8.5 Ocular delivery 41
 2.8.6 Topical delivery 42
 2.8.7 Implants 43
 2.8.8 Cancer therapy 44
 2.8.9 Gene delivery 45

CHAPTER-3 EXPERIMENTAL MATERIALS AND METHODS 47
3.1 INTRODUCTION 47
3.2 MATERIALS 47
3.2.1 Chitosan
3.2.2 Chlorpheniramine maleate (CPM)
3.2.3 Glutaraldehyde
3.2.4 Glycine
3.2.5 Monosodium glutamate
3.2.6 Other chemicals
3.2.7 Buffer solution

3.3 METHODS
3.3.1 Preparation of semi-interpenetrating polymer network (IPN) beads
 3.3.1.1 Preparation of drug unloaded beads
 3.3.1.2 Preparation of drug loaded beads
3.3.2 Visual characterization
3.3.3 Swelling studies
3.3.4 Estimation of drug concentration
3.3.5 Drug loading assay
3.3.6 Drug release studies
3.3.7 Kinetic analysis of drug release
3.3.8 Characterization of IPN beads
 3.3.8.1 Fourier transform infra red (FTIR) spectroscopy
 3.3.8.2 Scanning electron microscopy (SEM)
 3.3.8.3 Thermal analysis
 3.3.8.4 X-ray diffraction (XRD)

CHAPTER 4 COMPARISON OF CHITOSAN AND CHITOSAN-AMINO ACID BEADS

4.1 INTRODUCTION
4.2 CHARACTERIZATION OF RAW MATERIALS USED
 4.2.1 Fourier transform infra red spectroscopy
 4.2.2 Thermal analysis
 4.2.3 X-Ray diffraction
4.3 RESULTS AND DISCUSSION
 4.3.1 Characterization of chitosan and chitosan-amino acid IPN beads
 4.3.1.1 Scanning electron microscopy
 4.3.1.2 Fourier transformed infra red spectroscopy
4.3.1.3 Thermal analysis 72
4.3.1.4 X-ray diffraction 78
4.3.2 Swelling studies 80
4.3.3 Drug loading assay 82
4.3.4 Drug release study 82
4.3.5 Kinetic analysis of drug release 87

CHAPTER-5 INTERPENETRATING POLYMERIC NETWORK (IPN) OF CHITOSAN-GLYCINE-GLUTAMIC ACID BEADS 90

5.1 INTRODUCTION 90
5.2 RESULTS AND DISCUSSION 90
5.2.1 Swelling studies 90
5.2.1.1 Effect of pH 91
5.2.1.2 Effect of glutaraldehyde 91
5.2.1.3 Effect of chitosan 93
5.2.1.4 Effect of amino acids 94
5.2.2 Characterization of IPN beads 94
5.2.2.1 Scanning electron microscopy studies 94
5.2.2.2 Fourier transform infrared spectra studies 100
5.2.2.3 X-ray diffraction (XRD) 104
5.2.2.4 Thermal analysis 108
5.2.3 Drug release studies 118
5.2.3.1 Effect of pH 119
5.2.3.2 Effect of glutaraldehyde 119
5.2.3.3 Effect of chitosan 120
5.2.3.4 Effect of amino acid 120
5.2.3.5 Effect of drug quantity 121
5.2.4 Kinetic analysis of drug release 127

CHAPTER-6 CONCLUSION AND FUTURE SCOPE OF WORK 132

REFERENCES 135
APPENDIX-A FTIR SPECTRA 169
APPENDIX-B THERMAL ANALYSIS 188
APPENDIX-C X-RAY DIFFRACTOGRAMS 207
LIST OF PAPERS PUBLISHED 226