Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Background of the Work</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Study of Power Quality (PQ) Events</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1.1 Source of power quality events</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1.2 Effect of power quality events</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1.3 Remedial measures of power quality events</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2 Identification and classification of Power Quality Events</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2.1 Identification and classification of single power quality events</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2.2 Contributions of the present study in relation to single power quality events</td>
<td>12</td>
</tr>
<tr>
<td>1.2.2.3 Identification and classification of Mixed Power Quality (MPQ) events</td>
<td>13</td>
</tr>
<tr>
<td>1.2.2.4 Contributions of the present study in relation to mixed power quality events</td>
<td>15</td>
</tr>
<tr>
<td>1.2.3 Importance of remote updating for identification and classification of Power Quality events</td>
<td>17</td>
</tr>
<tr>
<td>1.3 Organization of thesis</td>
<td>17</td>
</tr>
<tr>
<td>1.4 Originality of the Thesis</td>
<td>18</td>
</tr>
<tr>
<td>2 Power Quality Events and Experimental Setup</td>
<td>20</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>20</td>
</tr>
<tr>
<td>2.2 Brief Description of Different Type of Power Quality Events</td>
<td>21</td>
</tr>
<tr>
<td>2.3 Generation of Power Quality Events</td>
<td>29</td>
</tr>
<tr>
<td>2.3.1 Parametric Model</td>
<td>29</td>
</tr>
<tr>
<td>2.3.2 Experimental Setup for Event Generation</td>
<td>31</td>
</tr>
</tbody>
</table>
CONTENTS

2.3.2.1 Computer generated data file 34
2.3.2.2 Event waveform generator 36
 2.3.2.2.1 Microcontroller in event generator module 36
 2.3.2.2.2 Digital to analog data conversion (DAC) 36
2.3.2.3 Analog data processing stage 37
2.3.2.4 Driver Stage .. 37
2.3.2.5 Pulse Generator 38
2.4 Description of Power Quality Event Monitoring Module 38
2.5 Summary .. 39

3 Identification and classification of Single Power Quality Events 41
 3.1 Introduction ... 41
 3.2 Scheme of Single Power Quality event identification and classification .. 42
 3.2.1 Cross-Correlation Based Feature Extraction 43
 3.2.2 Rough Set Theory for Minimum Feature Selection and Decision Rule Generation 47
 3.2.2.1 Information system 47
 3.2.2.2 Indiscernibility relation 48
 3.2.2.3 Set Approximation 48
 3.2.2.4 Selection of reduct and core 52
 3.3 Results and Discussions 55
 3.3.1 Identification and classification of Power Quality Events .. 55
 3.3.1.1 Step 1: The data table is discretized and dispensable attributes are removed 56
 3.3.1.2 Step 2: Judge the potential of decision rules .. 56
 3.3.1.3 Step 3: Reducts and Core are obtained 58
 3.3.1.4 Step 4: Decision rules are generated from the final table of Core and Reducts 58
 3.4 Effect of noise on the performance of Classifier 62
 3.5 Conclusion ... 62

4 Identification and classification of Mixed Power Quality Events 64
 4.1 Introduction ... 64