Chapter 4

Uniqueness of k^{th} derivative of differential-difference entire functions sharing a small function weakly with some weight

The content in this chapter has been communicated.
4.1 Introduction

In this chapter, we continue to investigate the uniqueness problems of finite order transcendental entire functions whose certain non-linear differential-difference polynomial share a small function in a relaxed manner. The results obtained generalize the results of P. Sahoo [69], P. Sahoo and H. Karmakar [70].

Following are well-known definitions in the literature of weighted sharing.

In 2001, I. Lahiri [37] first introduced a gradation of sharing of values which is known as weighted sharing, which is a scaling between sharing IM and sharing CM.

Definition 4.1.1. Weighted sharing [37]

Let k be a non-negative integer or infinity. For $\alpha \in \mathbb{C}$, $F_k(\alpha, f)$ denotes the set of all α-points of $f(z)$ where an α-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m > k$. If $F_k(\alpha, f) = F_k(\alpha, g)$, then $f(z)$ and $g(z)$ share the value ‘α’ with weight k.

Definition 4.1.2. [49]

Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions sharing α “IM”, for $\alpha \in S(f) \cap S(g)$ where $S(f)$ and $S(g)$ denotes the set of all small functions of $f(z)$ and $g(z)$ respectively and k be a positive integer or ∞.

(i) $N^{F}_k(r, \alpha; f, g \ \leq k)$ denotes the reduced counting function of those α—points of $f(z)$ whose multiplicities are equal to the corresponding α—points of $g(z)$, both of their multiplicities are not greater than k.

89
(ii) $\overline{N}^0(r, \alpha; f, g \setminus k > k)$ denotes the reduced counting function of those $\alpha-$points of $f(z)$ which are $\alpha-$points of $g(z)$, both of their multiplicities are not less than or equal to k.

Clearly $\overline{N}^0(r, \alpha; f, g \setminus k > k) = \overline{N}^0(r, \alpha; f, g \setminus k \geq k + 1)$.

Recently, S. H. Lin and W. C. Lin [49] introduced concept of weakly weighted sharing defined as follows:

Definition 4.1.3. [49]

Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions. For $\alpha \in S(f) \cap S(g)$, if k be a positive integer or ∞ and

$$\overline{N}(r, \alpha; f \setminus k) - \overline{N}^E(r, \alpha; f, g \setminus k) = S(r, f),$$

$$\overline{N}(r, \alpha; g \setminus k) - \overline{N}^E(r, \alpha; f, g \setminus k) = S(r, g),$$

$$\overline{N}(r, \alpha; f \setminus k + 1) - \overline{N}^0(r, \alpha; f, g \setminus k + 1) = S(r, f),$$

$$\overline{N}(r, \alpha; g \setminus k + 1) - \overline{N}^0(r, \alpha; f, g \setminus k + 1) = S(r, g)$$

or if $k = 0$ and

$$\overline{N}(r, \alpha, f) - \overline{N}^0(r, \alpha; f, g) = S(r, f),$$

$$\overline{N}(r, \alpha, g) - \overline{N}^0(r, \alpha; f, g) = S(r, g),$$

then $f(z)$, $g(z)$ weakly share α with weight k and is denoted by (α, k).

Definition 4.1.4. [4]

Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions and $\alpha \in \mathbb{C} \cup \{\infty\}$.

90
\(\overline{N}(r, \alpha; f \setminus = p; g \setminus = q) = S(r, f) \) is reduced counting function of common \(\alpha \)-points of \(f(z) \) and \(g(z) \) with multiplicities \(p \) and \(q \) respectively.

A. Banerjee and S. Mukherjee [4] introduced concept of relaxed weighted sharing defined as follows:

Definition 4.1.5. [4]

Let \(f(z) \) and \(g(z) \) be two non-constant meromorphic functions share ‘\(\alpha \)’ “IM”. Let \(k \) be a positive integer or \(\infty \) and \(\alpha \in \mathbb{C} \cup \{ \infty \} \). If

\[
\sum_{p,q \leq k} \overline{N}(r, \alpha; f \setminus = p; g \setminus = q) = S(r, f),
\]

then \(f(z) \) and \(g(z) \) share ‘\(\alpha \)’ with weight \(k \) in a relaxed manner and is denoted by \((\alpha, k)^{\alpha}\).

4.2 Preliminaries

In 2015, P. Sahoo [69] proved the following theorems.

Theorem 4.2.1. [69]

Let \(f(z) \) and \(g(z) \) be two finite order transcendental entire functions and \(\alpha(z) (\neq 0, \infty) \) be a small function with respect to both \(f(z) \) and \(g(z) \). Suppose that \(\eta \) is a non-zero complex constant, \(n \) and \(m (\geq 2) \) are integers satisfying \(n + m \geq 10 \). If \(f^n(z)(f(z) - 1)^m f(z + \eta) \) and \(g^n(z)(g(z) - 1)^m g(z + \eta) \) share \((\alpha(z), 2)\), then either \(f(z) \equiv g(z) \) or \(f(z) \) and \(g(z) \) satisfy the algebraic equation \(P(f, g) = 0 \), where

\[
R(w_1, w_2) = w_1^n (w_1 - 1)^m w_1(z + \eta) - w_2^n (w_2 - 1)^m w_2(z + \eta) \quad (4.2.1)
\]
Theorem 4.2.2. [69]

Let $f(z)$ and $g(z)$ be two finite order transcendental entire functions and $\alpha(z)(\neq 0, \infty)$ be a small function with respect to both $f(z)$ and $g(z)$. Suppose that η is a non-zero complex constant, n and $m(\geq 2)$ are integers satisfying $n + m \geq 13$. If $f^n(z)(f(z) - 1)^m f(z + \eta)$ and $g^n(z)(g(z) - 1)^m g(z + \eta)$ share $(\alpha(z), 2)^*$, then the conclusion of Theorem 4.2.1 holds.

Theorem 4.2.3. [69]

Let $f(z)$ and $g(z)$ be two finite order transcendental entire functions and $\alpha(z)(\neq 0, \infty)$ be a small function with respect to both $f(z)$ and $g(z)$. Suppose that η is a non-zero complex constant, n and $m(\geq 2)$ are integers satisfying $n + m \geq 19$. If $\overline{F}_2(\alpha(z), f^n(z)(f(z) - 1)^m f(z + \eta)) = \overline{F}_2(\alpha(z), g^n(z)(g(z) - 1)^m g(z + \eta))$, then the conclusion of Theorem 4.2.1 holds.

In the same year 2015, P. Sahoo and H. Karmakar [70] obtained the following theorems.

Theorem 4.2.4. [70]

Let $f(z)$ and $g(z)$ be two finite order transcendental entire functions and $\alpha(z)(\neq 0, \infty)$ be a small function with respect to both $f(z)$ and $g(z)$. Suppose that η is a non-zero complex constant, $n(\geq 1)$ and $m(\geq 1)$ and $k(\geq 0)$ are integers satisfying $n \geq 3k + 2m + 8$ when $m \leq k + 1$ and $n \geq 6k - m + 13$ when $m > k + 1$. If $(f^n(z)(f(z) - 1)^m f(z + \eta))^{(k)}$ and $(g^n(z)(g(z) - 1)^m g(z + \eta))^{(k)}$ share $(\alpha(z), 2)^*$, then either $f(z) = g(z)$ or $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f, g) = 0.$
where $R(f, g) = 0$ is given by (4.2.1).

Theorem 4.2.5. [70]

Let $f(z)$ and $g(z)$ be two finite order transcendental entire functions and $\alpha(z)(\neq 0, \infty)$ be a small function with respect to both $f(z)$ and $g(z)$. Suppose that η is a non-zero complex constant, $n(\geq 1)$ and $m(\geq 1)$ and $k(\geq 0)$ are integers satisfying $n \geq 5k + 4m + 12$ when $m \leq k + 1$ and $n \geq 10k - m + 19$ when $m > k + 1$. If

$$E_2\left(\alpha(z), (f^n(z)(f(z) - 1)^m f(z + \eta))^k\right) = E_2\left(\alpha(z), (g^n(z)(g(z) - 1)^m g(z + \eta))^k\right)$$

then the conclusion of Theorem 4.2.1 holds.

4.3 Main results

In this chapter, we extend above theorems by considering differential-difference functions of the form $\left(f^n(z)(f(z) - 1)^m \prod_{j=1}^d f(z + c_j)^{\nu_j}\right)^k$ as follows.

Theorem 4.3.1.

Let $f(z)$ and $g(z)$ be transcendental entire functions of finite order, $\alpha(z)(\neq 0)$ be a small function with respect to $f(z)$ and $g(z)$, $c_j (j = 1, 2, \ldots, d)$ be distinct finite non-zero complex numbers and n, m, d, k and $\nu_j (j = 1, 2, \ldots, d)$ are non-negative integers satisfying $n \geq 3k + 2m + 2\sigma + 6$ when $m \leq k + 1$ and $n \geq 6k - m + 2\sigma + 11$ when $m > k + 1$, where $\sigma = \sum_{j=1}^d \nu_j$. If $\left(f^n(z)(f(z) - 1)^m \prod_{j=1}^d f(z + c_j)^{\nu_j}\right)^k$ and $\left(g^n(z)(g(z) - 1)^m \prod_{j=1}^d g(z + c_j)^{\nu_j}\right)^k$ share $\alpha(z)$, then either $f(z) \equiv g(z)$ or $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f, g) = 0$, where $R(f, g)$ is given by

$$R(u_1, u_2) = u_1^n (u_1 - 1)^m \prod_{j=1}^d u_1 (z + c_j)^{\nu_j} - u_2^n (u_2 - 1)^m \prod_{j=1}^d u_2 (z + c_j)^{\nu_j}. \quad (4.3.1)$$
Theorem 4.3.2.

Let \(f(z) \) and \(g(z) \) be transcendental entire functions of finite order; \(\alpha(z)(\neq 0) \) be a small function with respect to \(f(z) \) and \(g(z) \), \(c_j (j = 1, 2, \ldots, d) \) be distinct finite non-zero complex numbers and \(n, m, d, k \) and \(r_j (j = 1, 2, \ldots, d) \) are non-negative integers satisfying \(n \geq 5k + 4m + 4\sigma + 8 \) when \(m \leq k + 1 \) and \(n \geq 10k - m + 4\sigma + 15 \) when \(m > k + 1 \), where \(\sigma = \sum_{j=1}^{d} r_j \). If

\[
E_{2n} \left(\alpha(z), \left(\frac{f''(z)f(z) - 1}{f(z)} \right)^{(k)} \right) = E_{2n} \left(\alpha(z), \left(\frac{g''(z)(g(z) - 1)}{g(z)} \right)^{(k)} \right)
\]

then the conclusion of Theorem 4.3.1 holds.

4.4 Lemmas

We need the following Lemmas to prove our results.

Lemma 4.4.1. [4]

Let \(F \) and \(G \) be non-constant meromorphic functions that share \((1, 2)^+\) and \(H = \left(\frac{F''}{F} - \frac{G''}{G} \right) - \left(\frac{F'''}{F} - \frac{G'''}{G} \right) \neq 0 \). Then

\[
T(r, F) \leq N_2 \left(r, \frac{1}{F} \right) + N_2 \left(r, \frac{1}{G} \right) + N_2(r, F) + N_2(r, G) + N \left(r, \frac{1}{F} \right) + N \left(r, \frac{1}{G} \right)
\]

\[
- n \left(r, \frac{1}{F} \right) + S(r, F) + S(r, G)
\]

and the same inequality is true for \(T(r, G) \).

Lemma 4.4.2. [50]

Let \(F \) and \(G \) be non-constant entire functions and \(p \geq 2 \) be an integer. If

\[
F_{p}(1, F) = F_{p}(1, G) \text{ and } H \neq 0,
\]

then

\[
T(r, F) \leq N_2 \left(r, \frac{1}{F} \right) + N_2 \left(r, \frac{1}{G} \right) + 2N \left(r, \frac{1}{F} \right) + N \left(r, \frac{1}{G} \right) + S(r, F) + S(r, G)
\]

94
and the same inequality is true for $T(r, G)$.

Lemma 4.4.3. [15]

Let $f(z)$ be entire function of finite order and

$$F = f^n(z)(f(z) - 1)^m \prod_{j=1}^{d} f(z + c_j)^{v_j}$$

Then, $T(r, F) = (n + m + \sigma)T(r, f) + S(r, f)$. $\sigma = \sum_{j=1}^{d} v_j$.

Lemma 4.4.4.

Let $f(z)$ and $g(z)$ be transcendental entire functions, $n(\geq 1)$, $m(\geq 1)$, $k(\geq 0)$ be integers, and let

$$F = \left(f^n(z)(f(z) - 1)^m \prod_{j=1}^{d} f(z + c_j)^{v_j} \right)^{(k)}$$
$$G = \left(g^n(z)(g(z) - 1)^m \prod_{j=1}^{d} g(z + c_j)^{v_j} \right)^{(k)}$$

If there exists non-zero constants c_1 and c_2 such that $\mathcal{N} \left(r, \frac{1}{F - c_1} \right) = \mathcal{N} \left(r, \frac{1}{G} \right)$ and $\mathcal{N} \left(r, \frac{1}{G - c_2} \right) = \mathcal{N} \left(r, \frac{1}{F} \right)$, then $n \leq 2k + m + \sigma + 2$ when $m \leq k + 1$ and $n \leq 4k - m + \sigma + 4$ when $m > k + 1$.

Proof: Let $F_1 = f^n(z)(f(z) - 1)^m \prod_{j=1}^{d} f(z + c_j)^{v_j}$ and

$$G_1 = g^n(z)(g(z) - 1)^m \prod_{j=1}^{d} g(z + c_j)^{v_j}.$$

By Lemma 4.4.3, we have

$$T(r, F_1) = (n + m + \sigma)T(r, f) + S(r, f) \quad (4.4.1)$$
$$T(r, G_1) = (n + m + \sigma)T(r, g) + S(r, g) \quad (4.4.2)$$

Since F is an entire function and from Second fundamental theorem, we get

$$T(r, F) \leq \mathcal{N} \left(r, \frac{1}{F} \right) + \mathcal{N} \left(r, \frac{1}{F - c_1} \right) + S(r, F) \quad (4.4.3)$$
From Lemma 1.4.4, (4.4.1) and (4.4.3), we deduce

\[(n + m + \sigma)T(r, f) \leq N_{k+1} \left(r, \frac{1}{f_1} \right) + N_{k+1} \left(r, \frac{1}{f_1} \right) + S(r, f) + S(r, g) \]

i.e.,

\[(n + m + \sigma)T(r, f) \leq N_{k+1} \left(r, \frac{1}{f^m(z)(f(z) - 1) \prod_{j=1}^{d} f(z + c_j)^{v_j}} \right) + N_{k+1} \left(r, \frac{1}{g^n(z)(g(z) - 1) \prod_{j=1}^{d} g(z + c_j)^{v_j}} \right) + S(r, f) + S(r, g) \quad (4.4.4)\]

If \(m \leq k + 1 \), then (4.4.4) reduces to

\[(n + m + \sigma)T(r, f) \leq (k + 1)T(r, f) + mT(r, f) + T \left(r, \prod_{j=1}^{d} f(z + c_j)^{v_j} \right) + (k + 1)T(r, g) + mT(r, g) + T \left(r, \prod_{j=1}^{d} g(z + c_j)^{v_j} \right) + S(r, f) + S(r, g) \]

i.e.,

\[(n + m + \sigma)T(r, f) \leq (k + 1 + m + \sigma)(T(r, f) + T(r, g)) + S(r, f) + S(r, g) \quad (4.4.5)\]

Similarly, we get

\[(n + m + \sigma)T(r, g) \leq (k + 1 + m + \sigma)(T(r, f) + T(r, g)) + S(r, f) + S(r, g) \quad (4.4.6)\]

Combining (4.4.5) and (4.4.6), we obtain

\[(n + m + \sigma)(T(r, f) + T(r, g)) \leq 2(k + 1 + m + \sigma)(T(r, f) + T(r, g)) + S(r, f) + S(r, g) \]
Thus, we get $n \leq 2k+m+\sigma+2$ as $f(z)$ and $g(z)$ are transcendental entire functions.

If $m > k+1$, then (4.4.4) reduces to

$$(n + m + \sigma)T(r, f) \leq (k + 1)T(r, f) + (k + 1)T(r, g) + T\left(r, \prod_{j=1}^{d} f(z + c_j)^{v_j}\right)$$

$$+ (k + 1)T(r, g) + (k + 1)T(r, g) + T\left(r, \prod_{j=1}^{d} g(z + c_j)^{v_j}\right)$$

$$+ S(r, f) + S(r, g)$$

i.e.,

$$(n + m + \sigma)T(r, f) \leq (2k + \sigma + 2)(T(r, f) + T(r, g)) + S(r, f) + S(r, g) \quad (4.4.7)$$

Similarly, we get

$$(n + m + \sigma)T(r, g) \leq (2k + \sigma + 2)(T(r, f) + T(r, g)) + S(r, f) + S(r, g) \quad (4.4.8)$$

Combining (4.4.7) and (4.4.8), we obtain

$$(n + m + \sigma)(T(r, f) + T(r, g)) \leq 2(2k + \sigma + 2)(T(r, f) + T(r, g)) + S(r, f) + S(r, g) \quad (4.4.9)$$

Thus, we get $n \leq 4k-m+\sigma+4$ as $f(z)$ and $g(z)$ are transcendental entire functions.

4.5 Proof of the main results

Proof of the Theorem 4.3.1:

Let $F = \frac{F^{(k)}}{\alpha(z)}$ and $G = \frac{G^{(k)}}{\alpha(z)}$ where $F_1 = f^{\alpha}(f(z) - 1)^m \prod_{j=1}^{d} f(z + c_j)^{v_j}$ and $G_1 = g^{\alpha}(g(z) - 1)^m \prod_{j=1}^{d} g(z + c_j)^{v_j}$. Then F and G are transcendental meromorphic
functions that share $(1.2)^n$ except the zeros and poles of $a(z)$.

Let $H \neq 0$. Then, using Lemma 4.4.1, we have

$$T(r, F) \leq N_2 \left(r, \frac{1}{F} \right) + N_2 \left(r, \frac{1}{G} \right) + N_1 \left(r, \frac{1}{F} \right) + S(r, F) + S(r, G) \quad (4.5.1)$$

From Lemma 1.4.4, $(4.5.1)$ reduces to

$$T(r, F_1) \leq N_{k+2} \left(r, \frac{1}{F_1} \right) + N_{k+2} \left(r, \frac{1}{G_1} \right) + N_{k+1} \left(r, \frac{1}{F_1} \right) + S(r, f) + S(r, g) \quad (4.5.2)$$

If $m \leq k + 1$, using Lemma 1.4.4, $(4.5.2)$ can be reduced to

$$(n+m+\sigma)T(r, f) \leq (k+2)T(r, f) + mT(r, f) + \sigma T(r, f) + (k+2)T(r, g)$$

$$+ mT(r, g) + \sigma T(r, g) + (k+1)T(r, f) + mT(r, f) + \sigma T(r, f)$$

$$+ S(r, f) + S(r, g)$$

i.e.,

$$(n+m+\sigma)T(r, f) \leq (2k+2m+2\sigma+3)T(r, f) + (k+m+\sigma+2)T(r, g) + S(r, f) + S(r, g) \quad (4.5.3)$$

Similarly, we get

$$T(r, g) \leq (2k+2m+2\sigma+3)T(r, g) + (k+m+\sigma+2)T(r, f) + S(r, f) + S(r, g) \quad (4.5.4)$$

Combining $(4.5.3)$ and $(4.5.4)$, we have

$$(n+m+\sigma)[T(r, f) + T(r, g)] \leq (3k+3m+3\sigma+5)[T(r, f) + T(r, g)] + S(r, f) + S(r, g)$$

which is contradiction to $n \geq 3k+2m+2\sigma+6$ as $f(z)$ and $g(z)$ are transcendental entire functions.
If \(m > k + 1 \), using Lemma 1.4.4, (4.5.2) can be reduced to

\[
(n + m + \sigma)T(r, f) \leq (k + 2)T(r, f) + (k + 2)T(r, f) + \sigma T(r, f) + (k + 2)T(r, g)
\]

\[
+ (k + 2)T(r, g) + \sigma T(r, g) + (k + 1)T(r, f) + (k + 1)T(r, f)
\]

\[
+ \sigma T(r, f) + S(r, f) + S(r, g)
\]

i.e.,

\[
(n + m + \sigma)T(r, f) \leq (4k + 2\sigma + 6)T(r, f) + (2k + \sigma + 4)T(r, g) + S(r, f) + S(r, g) \quad (4.5.5)
\]

similarly, we get

\[
(n + m + \sigma)T(r, g) \leq (4k + 2\sigma + 6)T(r, g) + (2k + \sigma + 4)T(r, f) + S(r, f) + S(r, g) \quad (4.5.6)
\]

Combining (4.5.5) and (4.5.6), we get

\[
(n + m + \sigma)[T(r, f) + T(r, g)] \leq (6k + 3\sigma + 10)[T(r, f) + T(r, g)] + S(r, f) + S(r, g)
\]

which is contradiction to \(n \geq 6k - m + 2\sigma + 11 \) as \(f(z) \) and \(g(z) \) are transcendental entire functions.

Thus \(II \equiv 0 \) that is \(\left(\frac{F''}{F'} - \frac{2F'}{F - 1} \right) - \left(\frac{G''}{G'} - \frac{2G'}{G - 1} \right) = 0 \) which implies \(\left(\frac{F''}{F'} - \frac{2F'}{F - 1} \right) = \left(\frac{G''}{G'} - \frac{2G'}{G - 1} \right) \).

Integrating both sides twice, we get

\[
\frac{1}{F - 1} = \frac{A}{G - 1} + B \quad (4.5.7)
\]

where \(A(\neq 0) \) and \(B \) are constants.

From (4.5.7), it is clear that \(f, g \) share 1 CM and hence they share \((1,2)\).

We now discuss the following cases:
Case 1: Let \(B \neq 0 \) and \(A = B \). Then from (4.5.7), we get
\[
\frac{1}{F - 1} = \frac{BG}{G - 1}
\]
(4.5.8)

If \(B = -1 \), then from (4.5.8), we have \(FG = 1 \), that is
\[
\left(f^n(f(z) - 1)^m \prod_{j=1}^{d} f(z + c_j)^{v_j} \right)^{(k)} \left(g^n(g(z) - 1)^m \prod_{j=1}^{d} g(z + c_j)^{v_j} \right)^{(k)} = \alpha^2(z)
\]
(4.5.9)

From (4.5.9), we have
\[
N\left(r, \frac{1}{F} \right) = S(r, f) \quad \text{and} \quad N\left(r, \frac{1}{F^{-1}} \right) = S(r, f),
\]
using these, we obtain
\[
\delta(0, f) = 1 - \lim_{r \to \infty} \frac{N\left(r, \frac{1}{F} \right)}{T(r, f)} = 1;
\]
\[
\delta(1, f) = 1 - \lim_{r \to \infty} \frac{N\left(r, \frac{1}{F^{-1}} \right)}{T(r, f)} = 1 \quad \text{and}
\]
\[
\delta(\infty, f) = 1 - \lim_{r \to \infty} \frac{N(r, f)}{T(r, f)} = 1
\]

Thus, \(\delta(0, f) + \delta(1, f) + \delta(\infty, f) = 3 \) which is not possible.

If \(B \neq -1 \), from (4.5.8), we can deduce that \(\frac{1}{F} = \frac{BG}{(B+1)G-1} \).

Thus, \(N\left(r, \frac{1}{\frac{B+1}{B+1}} \right) = N\left(r, \frac{1}{F} \right) \).

From Second Fundamental Theorem, we have
\[
T(r, G) \leq \mathcal{N} \left(r, \frac{1}{G} \right) + \mathcal{N} \left(r, \frac{1}{G - \frac{1}{B+1}} \right) + S(r, G)
\]
\[
\leq \mathcal{N} \left(r, \frac{1}{G} \right) + \mathcal{N} \left(r, \frac{1}{F} \right) + S(r, g)
\]
i.e.,
\[
T(r, G) \leq N_1 \left(r, \frac{1}{G^{(k)}} \right) + N_1 \left(r, \frac{1}{F^{(k)}} \right) + S(r, f) + S(r, g)
\]
(4.5.10)
Using Lemma 1.4.4 and (4.4.1), (4.5.10) can be deduced to

\[
(n + m + \sigma)T(r, g) \leq N_{k+1} \left(r, \frac{1}{f^m(f(z) - 1)^m \prod_{j=1}^{d} f(z + c_j)^{\nu_j}} \right) \\
+ N_{k+1} \left(r, \frac{1}{g^n(g(z) - 1)^m \prod_{j=1}^{d} g(z + c_j)^{\nu_j}} \right) \\
+ S(r, f) + S(r, g) \tag{4.5.11}
\]

If \(m \leq k + 1 \), from (4.5.11), we deduce

\[
(n + m + \sigma)T(r, g) \leq (k + m + \sigma + 1)(T(r, f) + T(r, g)) + S(r, f) + S(r, g) \tag{4.5.12}
\]

Similarly, we get

\[
(n + m + \sigma)T(r, f) \leq (k + m + \sigma + 1)(T(r, f) + T(r, g)) + S(r, f) + S(r, g) \tag{4.5.13}
\]

Combining (4.5.12) and (4.5.13), we get

\[
(n + m + \sigma)(T(r, f) + T(r, g)) \leq 2(k + m + \sigma + 1)(T(r, f) + T(r, g)) + S(r, f) + S(r, g)
\]

which is contradiction to \(n \geq 3k + 2m + 2\sigma + 6 \) as \(f(z) \) and \(g(z) \) are transcendental entire functions.

If \(m > k + 1 \), from (4.5.11), we deduce

\[
(n + m + \sigma)T(r, g) \leq (2k + \sigma + 2)(T(r, f) + T(r, g)) + S(r, f) + S(r, g) \tag{4.5.14}
\]

Similarly, we get

\[
(n + m + \sigma)T(r, f) \leq (2k + \sigma + 2)(T(r, f) + T(r, g)) + S(r, f) + S(r, g) \tag{4.5.15}
\]

Combining (4.5.14) and (4.5.15), we get

\[
(n + m + \sigma)(T(r, f) + T(r, g)) \leq 2(2k + \sigma + 2)(T(r, f) + T(r, g)) + S(r, f) + S(r, g)
\]
which is contradiction to \(n \geq 6k - m + 2\sigma + 11 \) as \(f(z) \) and \(g(z) \) are transcendental entire functions.

Case 2: Let \(B \neq 0 \) and \(A \neq B \). Then from (4.5.7), we get

\[
F = \frac{(1 + B)G - (B - A + 1)}{BG + (A - B)}
\]

Thus, we have \(\overline{N} \left(r, \frac{1}{G - \frac{(B - A + 1)}{A}} \right) = \overline{N} \left(r, \frac{1}{F} \right) \).

Proceeding in a manner similar to Case 1, we get a contradiction.

Case 3: Let \(B = 0 \) and \(A \neq 0 \). Then, from (4.5.7), we get

\[
F = \frac{G - 1 + A}{A} \quad \text{and} \quad G = AF - (A - 1). \quad \text{If} \quad A \neq 1, \quad \text{it follows that}
\]

\[
\overline{N} \left(r, \frac{1}{F} \right) = \overline{N} \left(r, \frac{1}{G} \right) \quad \text{and} \quad \overline{N} \left(r, \frac{1}{G - (A - 1)} \right) = \overline{N} \left(r, \frac{1}{F} \right).
\]

Applying Lemma 4.4.4, we arrive at a contradiction.

Therefore \(A = 1 \) which implies \(F = G \), that is

\[
\left(f^n (f(z) - 1)^m \prod_{j=1}^{d} f(z + cj)^{v_j} \right)^{(k)} = \left(g^n (g(z) - 1)^m \prod_{j=1}^{d} g(z + cj)^{v_j} \right)^{(k)}
\]

Integrating once, we obtain

\[
\left(f^n (f(z) - 1)^m \prod_{j=1}^{d} f(z + cj)^{v_j} \right)^{(k-1)} = \left(g^n (g(z) - 1)^m \prod_{j=1}^{d} g(z + cj)^{v_j} \right)^{(k-1)} + c_{k-1}
\]

where \(c_{k-1} \) is a constant. If \(c_{k-1} \neq 0 \), by Lemma 4.4.4, it follows that \(n \leq 2\bar{k} + m + \sigma \)

when \(m \leq k + 1 \) and \(n \leq 4\bar{k} - m + \sigma \) when \(m > k + 1 \), a contradiction to the hypothesis. Hence \(c_{k-1} = 0 \). Repeating the process \(\bar{k} \) times, we deduce that

\[
f^n (f(z) - 1)^m \prod_{j=1}^{d} f(z + cj)^{v_j} = g^n (g(z) - 1)^m \prod_{j=1}^{d} g(z + cj)^{v_j} \quad (4.5.16)
\]
Let \(h = \frac{f}{g} \).

If \(h \) is a constant, let \(h(z) = t \), then substituting \(f = gt \) in (4.5.16), we get

\[
\ell^n g^n(z)(tg(z) - 1)^m \prod_{j=1}^{d} \ell^m g(z + c_j)^{v_j} = g^n(z)(g(z) - 1)^m \prod_{j=1}^{d} (g + c_j)^{v_j}
\]

implies

\[
\ell^{n+\sigma}(tg(z) - 1)^m = (g(z) - 1)^m
\]

i.e.,

\[
\ell^{n+\sigma}(\ell^m g^m(z) - mC_1 \ell^{m-1} g^{m-1}(z) - \ldots - 1) = (g^m(z) - mC_1 g^{m-1}(z) - \ldots - 1)
\]

which implies \(\ell^{n+\sigma+m} = \ell^{n+\sigma+m-1} = \ldots = \ell^{n+\sigma} = 1 \), that is \(t = 1 \). Thus \(f(z) \equiv g(z) \).

If \(h(z) \) is not a constant, then \(f(z) \) and \(g(z) \) satisfy the algebraic equation \(R(f, g) = 0 \), where \(R(f, g) \) is given by

\[
R(u_1, u_2) = u_1^n (u_1 - 1)^m \prod_{j=1}^{d} (u_1 + c_j)^{v_j} - u_2^n (u_2 - 1)^m \prod_{j=1}^{d} (u_2 + c_j)^{v_j}.
\]

Hence the proof of Theorem 4.3.1.

Proof of the Theorem 4.3.2:

Let \(F, G, F_1, G_1 \) be as in Theorem 4.3.1. Then \(F \) and \(G \) are transcendental meromorphic functions such that \(\overline{T}_{2d}(1, F) = \overline{T}_{2d}(1, G) \) except for the zeros and poles of \(a_0(z) \).

Let \(H \neq 0 \). Then, from Lemma 1.4.4, Lemma 4.4.2 and from (4.4.1), we deduce

\[
(n + m + \sigma)T(r, f) \leq N_{k+2} \left(r, \frac{1}{F_1} \right) + N_{k+2} \left(r, \frac{1}{G_1} \right) + 2N_{k+1} \left(r, \frac{1}{F_1} \right)
\]

\[
+ N_{k+1} \left(r, \frac{1}{G_1} \right) + S(r, f) + S(r, g)
\]

(4.5.17)
If \(m \leq k + 1 \), then from (4.5.17), we deduce that

\[
(n + m + \sigma)T(r, f) \leq (3k + 3m + 3\sigma + 4)T(r, f) + (2k + 2m + 2\sigma + 3)T(r, g) + S(r, f) + S(r, g)
\]

Similarly, we get

\[
(n + m + \sigma)T(r, g) \leq (3k + 3m + 3\sigma + 4)T(r, g) + (2k + 2m + 2\sigma + 3)T(r, f) + S(r, f) + S(r, g)
\]

Combining (4.5.18) and (4.5.19), we obtain

\[
(n + m + \sigma)(T(r, f) + T(r, g)) \leq (5k + 5m + 5\sigma + 7)(T(r, f) + T(r, g)) + S(r, f) + S(r, g)
\]

which is contradiction to \(n \geq 5k + 4m + 4\sigma + 8 \) as \(f(z) \) and \(g(z) \) are transcendental entire functions.

If \(m > k + 1 \), then from (4.5.17), we deduce

\[
(n + m + \sigma)T(r, f) \leq (6k + 3\sigma + 8)T(r, f) + (4k + 2\sigma + 6)T(r, g) + S(r, f) + S(r, g)
\]

Similarly, we get

\[
(n + m + \sigma)T(r, g) \leq (6k + 3\sigma + 8)T(r, g) + (4k + 2\sigma + 6)T(r, f) + S(r, f) + S(r, g)
\]

Combining (4.5.20) and (4.5.21), we obtain

\[
(n + m + \sigma)(T(r, f) + T(r, g)) \leq (10k + 5\sigma + 14)(T(r, f) + T(r, g)) + S(r, f) + S(r, g)
\]

which is contradiction to \(n \geq 10k - m + 5\sigma + 15 \) as \(f(z) \) and \(g(z) \) are transcendental entire functions.
Thus $H \equiv 0$ and the rest of the theorem follows as in the proof of the Theorem 4.3.1.

Hence the proof of Theorem 4.3.2.

4.6 Conclusions

1. If $k = 0$ and $\sigma = 1$ in Theorem 4.3.1, then Theorem 4.3.1 reduces to Theorem 4.2.2.

2. If $\sigma = 1$ in Theorem 4.3.1, then Theorem 4.3.1 reduces to Theorem 4.2.4.

3. If $k = 0$ and $\sigma = 1$ in Theorem 4.3.2, then Theorem 4.3.2 reduces to Theorem 4.2.3.

4. If $\sigma = 1$ in Theorem 4.3.2, then Theorem 4.3.2 reduces to Theorem 4.2.5.