Chapter 5

Group \(\{1, -1, i, -i\}\) cordial labeling of some special graphs

In this Chapter, we investigate the group \(\{1, -1, i, -i\}\) cordial labeling of some special graphs. We prove that Umbrella graph, Lotus inside a circle, Jewel graph, Jelly fish graph, Jahangir graph and Dumbbell graph are all group \(\{1, -1, i, -i\}\) cordial. We further characterize Butterfly graphs that are group \(\{1, -1, i, -i\}\) cordial.

5.1 Group \(\{1, -1, i, -i\}\) cordial labeling of Butterfly graph and Umbrella graph

Theorem 5.1.1. For a given positive integer \(m\), the Butterfly graph \(BF_{m,n}\) is group \(\{1, -1, i, -i\}\) cordial if and only if

\[
 n \leq \begin{cases}
 2m + 3 & \text{if } m \text{ is even} \\
 2m - 1 & \text{if } m \text{ is odd}
\end{cases}
\]

Proof. Let \((u_1, u_2, \ldots, u_m)\) and \((v_1, v_2, \ldots, v_m)\) be the two Cycles of length \(m\) which are concatenated at vertices \(u_m\) and \(v_m\). Let \(w_1, w_2, \ldots, w_n\) be the end vertices of the \(n\) pendent edges attached at \(u_m\). Total number of vertices is \(2m + n - 1\) and total number of edges is \(2m + n\). For a given positive integer \(m\), assume that \(BF_{m,n}\) is group \(\{1, -1, i, -i\}\) cordial. Let \(f\) be a group \(\{1, -1, i, -i\}\) cordial labeling
of $BF_{m,n}$.

Case 1. m is even.

We claim that $n \leq 2m + 3$. Suppose $n = 2m + 4$. We need to choose m or $m + 1$ vertices to give label 1 so that $2m + 2$ edges get label 1. But we have only m vertices say $u_1, u_3, ..., u_{m-1}, v_1, v_3, ..., v_{m-1}$ so that when they get label 1, we have $2m$ edges with label 1. There is no choice of one more vertex so that 2 more edges get label 1. A similar contradiction arises for every $n > 2m + 4$. Thus $n \leq 2m + 3$.

Case 2. m is odd.

We claim that $n \leq 2m - 1$. Suppose $n = 2m$. We need to give label 1 to m or $m - 1$ vertices so that $2m$ edges get label 1. But at most $m - 1$ vertices viz., $u_1, u_3, ..., u_{m-2}, v_1, v_3, ..., v_{m-2}$ can be given label 1 so that $2m - 2$ edges get label 1. There is no other choice of one vertex so that 2 more edges get label 1. A similar contradiction arises for every $n \geq 2m$. So $n \leq 2m - 1$.

Conversely, consider the following cases.

Case 1. m is even.

Assume that $n \leq 2m + 3$. Consider the case when $n \leq 2m + 1$.

Now $\frac{2m+n-1}{4} \leq m$.

Subcase(i). $n - 1 \equiv 0 (mod 4)$

Let f be a labeling defined as follows:
Choose $\frac{m}{2} + \frac{n-1}{4}$ vertices among $\{u_1, u_3, ..., u_{m-1}, v_1, v_3, ..., v_{m-1}\}$ and give them label 1. Label the remaining vertices arbitrarily so that $\frac{m}{2} + \frac{n-1}{4}$ vertices get label -1, $\frac{m}{2} + \frac{n-1}{4}$ vertices get label i and $\frac{m}{2} + \frac{n-1}{4}$ vertices get label $-i$.

86
Subcase(ii). $n - 1 \equiv 1 (mod\ 4)$

Let f be a labeling defined as follows:
Choose $\frac{m}{2} + \lceil \frac{n-1}{4} \rceil$ vertices among \{u_1, u_3, ..., u_{m-1}, v_1, v_3, ..., v_{m-1}\} and give them label 1. Also give label 1 to w_1. Label the remaining vertices arbitrarily so that $\frac{m}{2} + \lfloor \frac{n-1}{4} \rfloor$ vertices get label -1, $\frac{m}{2} + \lceil \frac{n-1}{4} \rceil$ vertices
vertices get label i and $\frac{m}{2} + \left\lceil \frac{n-1}{4} \right\rceil$ vertices get label $-i$.

Subcase(iii). $n - 1 \equiv 2 \pmod{4}$

Let f be a labeling defined as follows:
Choose $\frac{m}{2} + \left\lceil \frac{n-1}{4} \right\rceil$ vertices among $\{u_1, u_3, ..., u_{m-1}, v_1, v_3, ..., v_{m-1}\}$ and give them label 1. Label the remaining vertices arbitrarily so that $\frac{m}{2} + \left\lceil \frac{n-1}{4} \right\rceil$ vertices get label -1, $\frac{m}{2} + \left\lfloor \frac{n-1}{4} \right\rfloor$ vertices get label i and $\frac{m}{2} + \left\lceil \frac{n-1}{4} \right\rceil$ vertices get label $-i$.

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>$e_f(0)$</th>
<th>$e_f(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n - 1 \equiv 0 \pmod{4}$</td>
<td>$\frac{2m+n+1}{2}$</td>
<td>$\frac{2m+n-1}{2}$</td>
</tr>
<tr>
<td>$n - 1 \equiv 1 \pmod{4}$</td>
<td>$\frac{2m+n}{2}$</td>
<td>$\frac{2m+n}{2}$</td>
</tr>
<tr>
<td>$n - 1 \equiv 2 \pmod{4}$</td>
<td>$\frac{2m+n-1}{2}$</td>
<td>$\frac{2m+n+1}{2}$</td>
</tr>
<tr>
<td>$n - 1 \equiv 3 \pmod{4}$</td>
<td>$\frac{2m+n}{2}$</td>
<td>$\frac{2m+n}{2}$</td>
</tr>
<tr>
<td>$n = 2m + 2$</td>
<td>$2m + 1$</td>
<td>$2m + 1$</td>
</tr>
<tr>
<td>$n = 2m + 3$</td>
<td>$2m + 2$</td>
<td>$2m + 1$</td>
</tr>
</tbody>
</table>

Table 5.3

Subcase(iv). $n - 1 \equiv 3 \pmod{4}$

Let f be a labeling defined as follows:
Choose $\frac{m}{2} + \left\lceil \frac{n-1}{4} \right\rceil$ vertices among $\{u_1, u_3, ..., u_{m-1}, v_1, v_3, ..., v_{m-1}\}$ and give them label 1. Label the remaining vertices arbitrarily so that $\frac{m}{2} + \left\lceil \frac{n-1}{4} \right\rceil$ vertices get label -1, $\frac{m}{2} + \left\lfloor \frac{n-1}{4} \right\rfloor$ vertices get label i and $\frac{m}{2} + \left\lceil \frac{n-1}{4} \right\rceil$ vertices get label $-i$.

For $n = 2m + 2$ and $n = 2m + 3$, label $u_1, u_3, ..., u_{m-1}, v_1, v_3, ..., v_{m-1}$ and also w_1 by 1. The remaining vertices are labelled as in Table 5.1. That f is a group $\{1, -1, i, -i\}$ cordial labeling is evident from Tables...
5.1, 5.2 and 5.3.

Case 2. m is odd.

Assume that $n \leq 2m - 1$. Consider the case when $n \leq 2m - 2$.

Subcase(i). $n \equiv 0 (\text{mod} \ 4)$

Let f be a labeling defined as follows:
Choose $\frac{m+1}{2} + \left\lfloor \frac{n-4}{4} \right\rfloor$ vertices among $\{u_1, u_3, ..., u_{m-2}, v_1, v_3, ..., v_{m-2}\}$ and give them label 1. Also give label 1 to w_1. Label the remaining vertices arbitrarily so that $\frac{m+1}{2} + \left\lfloor \frac{n-4}{4} \right\rfloor$ vertices get label -1, $\frac{m+1}{2} + \left\lfloor \frac{n-4}{4} \right\rfloor$ vertices get label i and $\frac{m+1}{2} + \left\lfloor \frac{n-4}{4} \right\rfloor$ vertices get label $-i$.

Subcase(ii). $n \equiv 1 (\text{mod} \ 4)$

Let f be a labeling defined as follows:
Choose $\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$ vertices among $\{u_1, u_3, ..., u_{m-2}, v_1, v_3, ..., v_{m-2}\}$ and give them label 1. Label the remaining vertices arbitrarily so that $\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$ vertices get label -1, $\frac{m-1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$ vertices get label i and $\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$ vertices get label $-i$.

Subcase(iii). $n \equiv 2 (\text{mod} \ 4)$

Let f be a labeling defined as follows:
Choose $\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$ vertices among $\{u_1, u_3, ..., u_{m-2}, v_1, v_3, ..., v_{m-2}\}$ and give them label 1. Label the remaining vertices arbitrarily so that $\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$ vertices get label -1, $\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$ vertices get label i and $\frac{m-1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$ vertices get label $-i$.

Subcase(iv). $n \equiv 3 (\text{mod} \ 4)$

Let f be a labeling defined as follows:
Choose $\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$ vertices among $\{u_1, u_3, \ldots, u_{m-2}, v_1, v_3, \ldots, v_{m-2}\}$ and give them label 1. Label the remaining vertices arbitrarily so that $\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$ vertices get label -1, $\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$ vertices get label i and $\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$ vertices get label $-i$.

Suppose $n = 2m - 1$. Choose $\frac{m+1}{2} + \left\lfloor \frac{n-4}{4} \right\rfloor$ vertices among $\{u_1, u_3, \ldots, u_{m-2}, v_1, v_3, \ldots, v_{m-2}\}$ and give them label 1. Also give w_1, label 1. Label the remaining vertices arbitrarily so that $\frac{m+1}{2} + \left\lfloor \frac{n-4}{4} \right\rfloor$ vertices get label -1, $\frac{m+1}{2} + \left\lfloor \frac{n-4}{4} \right\rfloor$ vertices get label i and $\frac{m+1}{2} + \left\lfloor \frac{n-4}{4} \right\rfloor$ vertices get label $-i$. Now $m + \left(\frac{n-1}{2}\right)$ edges get label 1 and $m + \left(\frac{n+1}{2}\right)$ edges get label 0. That f is a group $\{1, -1, i, -i\}$ cordial labeling is evident from above argument and also from Tables 5.4 and 5.5.

\[\square\]

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>$v_f(1)$</th>
<th>$v_f(-1)$</th>
<th>$v_f(i)$</th>
<th>$v_f(-i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \equiv 0\pmod{4}$</td>
<td>$\frac{m+1}{2} + \left\lfloor \frac{n-4}{4} \right\rfloor$</td>
</tr>
<tr>
<td>$n \equiv 1\pmod{4}$</td>
<td>$\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$</td>
<td>$\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$</td>
<td>$\frac{m-1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$</td>
<td>$\frac{m-1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$</td>
</tr>
<tr>
<td>$n \equiv 2\pmod{4}$</td>
<td>$\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$</td>
</tr>
<tr>
<td>$n \equiv 3\pmod{4}$</td>
<td>$\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$</td>
<td>$\frac{m+1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$</td>
<td>$\frac{m-1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$</td>
<td>$\frac{m-1}{2} + \left\lfloor \frac{n}{4} \right\rfloor$</td>
</tr>
</tbody>
</table>

Table 5.4

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>$e_f(0)$</th>
<th>$e_f(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \equiv 0\pmod{4}$</td>
<td>$m + \frac{n}{2}$</td>
<td>$m + \frac{n}{2}$</td>
</tr>
<tr>
<td>$n \equiv 1\pmod{4}$</td>
<td>$m + \frac{n}{2}$</td>
<td>$m + \frac{n+1}{2}$</td>
</tr>
<tr>
<td>$n \equiv 2\pmod{4}$</td>
<td>$m + \frac{n}{2}$</td>
<td>$m + \frac{n}{2}$</td>
</tr>
<tr>
<td>$n \equiv 3\pmod{4}$</td>
<td>$m + \frac{n+1}{2}$</td>
<td>$m + \frac{n-1}{2}$</td>
</tr>
</tbody>
</table>

Table 5.5
Corollary 5.1.2. The Butterfly graph $BF_{m,n}$ is group $\{1, -1, i, -i\}$ cordial for every m if and only if $n \leq 5$.

Example 5.1.3. A group $\{1, -1, i, -i\}$ cordial labeling of $BF_{5,7}$ is given in Fig 5.1.

Theorem 5.1.4. The Umbrella graph $U_{n,n}$ is group $\{1, -1, i, -i\}$ cordial for all n.

Proof. Let u_1, u_2, \ldots, u_n be the vertices of the path P_n in the Fan F_n and v_1, v_2, \ldots, v_n be the vertices of the path P_n where v_1 is identified with the vertex of K_1 in Fan F_n. Number of vertices in $U_{n,n}$ is $2n$ and number of edges is $3n - 2$.

Case 1. n is even.

Let $n = 2k$, $k \geq 1$, $k \in \mathbb{Z}$.

Define a labeling f as follows:

$f(u_2) = f(u_4) = \ldots = f(u_{2k}) = 1$;
$f(u_1) = f(u_3) = \ldots = f(u_{2k-1}) = -1$;
$f(v_i) = i$ for $1 \leq i \leq k$;
$f(v_i) = -i$ for $k + 1 \leq i \leq 2k$.

Number of edges with label $1 = 3(k - 1) + 2 = 3k - 1$.

91
Case 2. n is odd.

Let $n = 2k + 1$, $k \geq 0, k \in \mathbb{Z}$. If $k = 0$, $U_{n,n}$ is $U_{1,1}$ which is trivially group $\{1,-1,i,-i\}$ cordial. Suppose $k \geq 1$.

Define a labeling f as follows:
\[f(u_2) = f(u_4) = \ldots = f(u_{2k}) = f(u_{2k+1}) = 1; \]
\[f(u_1) = f(u_3) = \ldots = f(u_{2k-1}) = -1; \]
For $1 \leq i \leq k + 1$, $f(v_i) = i$;
For $k + 2 \leq i \leq 2k + 1$, $f(v_i) = -i$.

Number of edges with label 1 = $3k + 1$. Table 5.6 shows that f is a group $\{1,-1,i,-i\}$ cordial labeling.

<table>
<thead>
<tr>
<th>n</th>
<th>$v_f(1)$</th>
<th>$v_f(-1)$</th>
<th>$v_f(i)$</th>
<th>$v_f(-i)$</th>
<th>$e_f(0)$</th>
<th>$e_f(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2k, k \geq 1, k \in \mathbb{Z}$</td>
<td>k</td>
<td>k</td>
<td>k</td>
<td>$3k - 1$</td>
<td>$3k - 1$</td>
<td></td>
</tr>
<tr>
<td>$2k + 1, k \geq 0, k \in \mathbb{Z}$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>k</td>
<td>$3k$</td>
<td>$3k + 1$</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.6

Example 5.1.5. A group $\{1,-1,i,-i\}$ cordial labeling of $U_{5,5}$ is given in Fig. 5.2.
5.2 Group \(\{1, -1, i, -i\} \) cordial labeling of Jewel graph, Jelly fish graph and Jahangir graph

Theorem 5.2.1. The Jewel graph \(J_n \) is group \(\{1, -1, i, -i\} \) cordial if and only if \(n \leq 7 \).

Proof. Let \(V(J_n) = \{u, x, y, u_i(1 \leq i \leq n)\} \) and \(E(J_n) = \{ux, vx, uy, vy, xy, uu_i, vu_i(1 \leq i \leq n)\} \). \(J_n \) has \(n + 4 \) vertices and \(2n + 5 \) edges. Suppose that \(J_n \) is group \(\{1, -1, i, -i\} \) cordial. Let \(f \) be a group \(\{1, -1, i, -i\} \) cordial labeling of \(J_n \).

Case 1. \(n \equiv 0 \pmod{4} \)

Let \(n = 4k \), \(k \geq 1, k \in \mathbb{Z} \). Each vertex label should appear \(k + 1 \) times. One edge label should appear \(4k + 3 \) times and another should appear \(4k + 2 \) times.

Subcase (i). Label of \(u \) or \(v \) is 1.

Without loss of generality, let label of \(u \) be 1. This induces edge label 1 to \(4k + 2 \) edges. Hence, in order that the labeling is group \(\{1, -1, i, -i\} \) cordial, we need to have \(k + 1 = 1 \) or \(k + 1 = 2 \). So \(k = 0 \) or 1. Thus \(n = 0 \) or \(n = 4 \).

Subcase (ii). Neither \(u \) nor \(v \) has label 1.

Now, the possibilities are \(2k + 3 = 4k + 2 \), \(2k + 3 = 4k + 3 \), \(2k + 2 = 4k + 2 \) and \(2k + 2 = 4k + 3 \). In all these cases, either \(k = 0 \) or \(k \notin \mathbb{Z} \). Thus \(n = 0 \) or \(n = 4 \).

Case 2. \(n \equiv 1 \pmod{4} \)

Let \(n = 4k + 1 \), \(k \geq 0, k \in \mathbb{Z} \). In a group \(\{1, -1, i, -i\} \) cordial labeling, three vertex labels should appear \(k + 1 \) times and one vertex label should appear \(k + 2 \) times. One edge label should appear \(4k + 3 \)
Table 5.7

<table>
<thead>
<tr>
<th>n</th>
<th>u</th>
<th>x</th>
<th>y</th>
<th>v</th>
<th>u₁</th>
<th>u₂</th>
<th>u₃</th>
<th>u₄</th>
<th>u₅</th>
<th>u₆</th>
<th>u₇</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>-i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>-i</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>-i</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>-i</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>-i</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>-i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>-i</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>i</td>
<td>-i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>-i</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>i</td>
<td>-i</td>
<td>i</td>
<td>-i</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>-i</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>i</td>
<td>-i</td>
<td>-i</td>
<td>-i</td>
</tr>
</tbody>
</table>

times and another $4k + 4$ times.

Subcase(i). Label of u or v is 1.

Without loss of generality, let label of u be 1. This induces edge label 1 to $4k + 3$ edges. So the possibilities are $k + 1 = 1, k + 1 = 2, k + 2 = 1, k + 2 = 2$. Thus $k = 0$ or $k = 1$. So $n = 1$ or $n = 5$.

Subcase(ii). Neither u nor v has label 1.

As in Case 1, the only possible value for k is 0.

Case 3. $n \equiv 2 \pmod{4}$

Let $n = 4k + 2, k \geq 0, k \in \mathbb{Z}$. Two vertex labels should appear $k + 1$ times and two other vertex labels should appear $k + 2$ times. One edge label should appear $4k + 4$ times and another should appear $4k + 5$ times.

Subcase(i). Label of u or v is 1.

As in previous cases, $k = 0$ or $k = 1$. So $n = 2$ or $n = 6$.

Subcase(ii). Neither u nor v has label 1.

We have $k = 0$.
Case 4. \(n \equiv 3 \pmod{4} \)

Let \(n = 4k + 3 \), \(k \geq 0, k \in \mathbb{Z} \). Three vertex labels should appear \(k + 2 \) times and one vertex label should appear \(k + 1 \) times. One edge label should appear \(4k + 5 \) times and another should appear \(4k + 6 \) times.

Subcase (i). Label of \(u \) or \(v \) is 1.
As in previous cases, \(k = 0 \) or \(k = 1 \). So \(n = 3 \) or \(n = 7 \).

Subcase (ii). Neither \(u \) nor \(v \) has label 1.

We have \(k = 0 \). Thus \(0 \leq n \leq 7 \). For \(0 \leq n \leq 7 \), a group \(\{1, -1, i, -i\} \) cordial labeling is given in Table 5.7. \(\square \)

Example 5.2.2. A group \(\{1, -1, i, -i\} \) cordial labeling of \(J_4 \) is given in Fig. 5.3.

![Fig. 5.3](image)

Theorem 5.2.3. Jelly fish graphs \(J(m, n)(m \leq n) \) are group \(\{1, -1, i, -i\} \) cordial if and only if either \(m + n \leq 10 \) or \(3m - 6 \leq n \leq 3m + 6 \).

Proof. Let the \(m \) pendent vertices adjacent to \(u \) be labeled as \(u_1, u_2, \ldots, u_m \) and the \(n \) pendent vertices adjacent to \(v \) be labeled as \(v_1, v_2, \ldots, v_n \).
Number of vertices in $J(m, n)$ is $m + n + 4$ and number of edges is $m + n + 5$. Let f be a group $\{1, -1, i, -i\}$ cordial labeling of $J(m, n)$.

Case 1. $m + n \equiv 0 (\text{mod } 4)$.

Let $m + n = 4k, k \geq 1, k \in \mathbb{Z}$. Each vertex label should appear $k + 1$ times. One edge label should appear $2k + 2$ times and another should appear $2k + 3$ times.

Subcase(i). $f(u) \neq 1$ and $f(v) \neq 1$.

If $f(x) = 1$ and $f(y) \neq 1$, then every other vertex with label 1 will yield only one edge with label 1. So $k = 2k - 1$ or $k = 2k$ so that $k = 1$ or $k = 0$. If both $f(x) = 1$ and $f(y) = 1$, then $k - 1 = 2k - 3$ or $k - 1 = 2k - 2$ and so $k = 2$ or $k = 1$. If $k = 1, m + n = 4$ and if $k = 2, m + n = 8$. If $k = 1$, label x and v_1 with 1 and remaining vertices arbitrarily so that 2 vertices get label -1, 2 vertices get label i and 2 vertices get label $-i$. If $k = 2$, label x, y and v_1 with 1 and remaining vertices arbitrarily so that each vertex label appears on 3 vertices.

Subcase(ii). $f(u) = 1$ and $f(v) = 1$.

This induces label 1 to $m + n + 4$ edges and so this case is impossible.

Subcase(iii). $f(u) = 1$ and $f(v) \neq 1$.

If both $f(x) \neq 1$ and $f(y) \neq 1$, then either $k = 2k - m$ or $k = 2k - m + 1$. So either $k = m$ or $k = m - 1$ and so $n = 3m$ or $n = 3m - 4$. In both the cases, label the vertices v_1, v_2, \ldots, v_k with 1 and the remaining vertices arbitrarily so that each vertex label appears on exactly $k + 1$ vertices. Suppose either $f(x) = 1$ or $f(y) = 1$. Without loss of generality, let $f(x) = 1$. Then as above, $k = m + 1$ or $k = m$. In both the cases, label the vertices $v_1, v_2, \ldots, v_{k-1}$ with 1 and
the remaining vertices arbitrarily so that each vertex label appears on exactly \(k + 1 \) vertices. When \(k = m - 1, m \) or \(m + 1 \), we have \(n = 3m - 4, 3m, 3m + 4 \) accordingly.

Subcase (iv). \(f(u) \neq 1 \) and \(f(v) = 1 \).

As in Subcase (iii), by symmetry, we have \(k = n, n - 1 \) or \(n + 1 \). But, by assumption \(m \leq n \) and so in this case \(n \leq 2 \).

Case 2. \(m + n \equiv 1(\text{mod} \ 4) \).

Let \(m + n = 4k + 1, k \geq 0, k \in \mathbb{Z} \). Three vertex labels should appear \(k + 1 \) times and one vertex label should appear \(k + 2 \) times. Each edge label should appear \(2k + 3 \) times.

Subcase (i). \(f(u) \neq 1 \) and \(f(v) \neq 1 \).

If \(f(x) = 1 \) and \(f(y) \neq 1 \), then either \(k = 2k \) or \(k + 1 = 2k \) so that \(k = 0 \) or \(1 \). If \(k = 0 \), take \(f(y) = -1, f(u) = f(v) = i \) and \(f(v_1) = -i \).

If both \(f(x) = 1 \) and \(f(y) = 1 \), then either \(k - 1 = 2k - 2 \) or \(k = 2k - 2 \) so that \(k = 1 \) or \(k = 2 \). If \(k = 1, f(x) = 1, f(v_1) = 1 \) and \(f(v_2) = 1 \). Label the remaining vertices arbitrarily so that each vertex label appears on 2 vertices. If \(k = 2 \), let \(f(x) = 1, f(y) = 1, f(v_1) = 1 \) and \(f(v_2) = 1 \). Label the remaining vertices arbitrarily so that each vertex label appears on 3 vertices. As \(k = 0, 1 \) or \(2 \), we have \(m + n = 1, 5 \) or \(9 \).

Subcase (ii). \(f(u) = 1 \) and \(f(v) = 1 \).

As in Subcase (ii) of Case (1), this is impossible.

Subcase (iii). \(f(u) = 1 \) and \(f(v) \neq 1 \).

If both \(f(x) \neq 1 \) and \(f(y) \neq 1 \), then either \(k = 2k - m + 1 \) or \(k + 1 = 2k - m + 1 \) so that \(k = m - 1 \) or \(k = m \). In the former case, label \(v_1, v_2, \ldots, v_k \) with 1 and the remaining vertices arbitrarily so
that \(k+1 \) vertices get label \(-1\), \(k+1 \) vertices get label \(i \) and \(k+2 \) vertices get label \(-i\). In the latter case, label \(v_1, v_2, \ldots, v_{k+1} \) with 1 and the remaining vertices arbitrarily so that each of the vertex labels \(-1, i\) and \(-i\) appear on \(k+1 \) vertices. Suppose \(f(x) = 1 \) and \(f(y) \neq 1 \). Then as above \(k = m \) or \(k = m + 1 \). If \(k = m + 1 \), label the vertices \(v_1, v_2, \ldots, v_k \) with 1 and the remaining vertices arbitrarily so that each of the vertex labels \(-1, i\) and \(-i\) appear on \(k+1 \) vertices. As \(k = m - 1, m, m+1 \), we have \(n = 3m - 3, 3m + 1 \) or \(3m + 5 \).

Subcase (iv). \(f(u) \neq 1 \) and \(f(v) = 1 \).

As in Subcase (3), we get \(k = n - 1, n \) or \(n + 1 \). As \(m \leq n \), in these cases, \(n \leq 2 \).

Case 3. \(m + n \equiv 2 \pmod{4} \).

Let \(m + n = 4k + 2, k \geq 0, k \in \mathbb{Z} \). Two vertex labels should appear \(k+1 \) times and two other vertex labels should appear \(k+2 \) times. One edge label should appear \(2k + 3 \) times and another should appear \(2k + 4 \) times.

Subcase (i). \(f(u) \neq 1 \) and \(f(v) \neq 1 \).

If \(f(x) = 1 \) and \(f(y) \neq 1 \), then there are four possibilities; \(k = 2k, k = 2k + 1, k+1 = 2k \) and \(k + 1 = 2k + 1 \). Hence \(k = 0 \) or 1. If \(k = 0, f(x) = 1, f(y) = -1, f(u) = f(v) = i, f(u_1) = f(v_1) = -i \). If \(k = 1, f(x) = 1, f(v_1) = f(v_2) = 1 \). Label remaining vertices arbitrarily so that 3 vertices get label \(-1\), 2 vertices get label \(i \) and 2 vertices get label \(-i\). If both \(f(x) = 1 \) and \(f(y) = 1 \), then \(k = 0, 1 \) or 2. If \(k = 2, f(x) = f(y) = f(v_1) = f(v_2) = 1 \). Label the remaining vertices arbitrarily so that 4 vertices get label \(-1\), 3 vertices get label \(i \) and 3 vertices get label \(-i\). As \(k = 0, 1, 2, m+n = 2, 6 \) or 10.

Subcase (ii). \(f(u) = 1 \) and \(f(v) = 1 \).
As in previous cases, this is not possible.

Subcase(iii). \(f(u) = 1 \) and \(f(v) \neq 1 \).

If both \(f(x) \neq 1 \) and \(f(y) \neq 1 \) then \(k = m - 1, m - 2 \) or \(m \). If \(k = m - 1 \) or \(m - 2 \), label \(v_1,v_2,\ldots,v_k \) with 1. Label the remaining vertices arbitrarily so that \(k+1 \) vertices get label \(-1\), \(k+2 \) vertices get label \(i \) and \(k+2 \) vertices get label \(-i\). If \(k = m \), label \(v_1,v_2,\ldots,v_{k+1} \) with 1. Label the remaining vertices arbitrarily so that \(k+2 \) vertices get label \(-1\), \(k+1 \) vertices get label \(i \) and \(k+1 \) vertices get label \(-i\).

Suppose \(f(x) = 1 \) and \(f(y) \neq 1 \). As above, \(k = m - 1, m \) or \(m + 1 \). If \(k = m \), label \(v_1,v_2,\ldots,v_{k-1} \) with 1. Label the remaining vertices arbitrarily so that \(k+1 \) vertices get label \(-1\), \(k+2 \) vertices get label \(i \) and \(k+2 \) vertices get label \(-i\). As \(k = m - 1, m - 2, m, m + 1 \), we have \(n = 3m - 6, 3m - 2, 3m + 2 \) or \(3m + 6 \).

Subcase(iv). \(f(u) \neq 1 \) and \(f(v) = 1 \).

As in Subcase(iii), we get \(k = n - 2, n - 1, n \) or \(n + 1 \). As \(m \leq n \), we have \(n \leq 3 \).

Case 4. \(m + n \equiv 3 \) (mod 4)

Let \(m + n = 4k + 3, k \geq 0, k \in \mathbb{Z} \). Three vertex labels should appear \(k+2 \) times and one vertex label should appear \(k+1 \) vertices. Each edge label should appear \(2k + 4 \) times.

Subcase(i). \(f(u) \neq 1 \) and \(f(v) \neq 1 \).

If \(f(x) = 1 \) and \(f(y) \neq 1 \), then either \(k + 1 = 2k + 1 \) or \(k = 2k + 1 \) so that \(k = 0 \) or \(-1\); If \(k = 0 \), \(f(v_1) = 1 \); Label the remaining vertices arbitrarily so that 2 vertices get label \(-1\), 2 vertices get label \(i \) and 1 vertex get label \(-i\). If both \(f(x) = 1 \) and \(f(y) = 1 \), then either \(k = 2k - 1 \) or \(k - 1 = 2k - 1 \) so that \(k = 1 \) or \(k = 0 \). If \(k = 1 \), \(f(v_1) = 1 \). Label the remaining vertices arbitrarily so that 3 vertices
get label $-1, 3$ vertices get label i and 2 vertices get label $-i$. As $k = 0, 1, m + n = 3$ or $m + n = 7$.

Subcase (ii). $f(u) = 1$ and $f(v) = 1$.

As in previous cases, this is impossible.

![Fig. 5.4](image)

Subcase (iii). $f(u) = 1$ and $f(v) \neq 1$.

If both $f(x) \neq 1$ and $f(y) \neq 1$, then $k = m - 1$ or $k = m - 2$. If $k = m - 1$, label $v_1, v_2, ..., v_{k+1}$ with 1 and remaining vertices arbitrarily so that $k + 2$ vertices get label $-i, k + 2$ vertices get label i and $k + 1$ vertices get label $-i$. If $k = m - 2$, label $v_1, v_2, ..., v_k$ with 1 and remaining vertices arbitrarily so that $k + 2$ vertices get label $-1, k + 2$ vertices get label i and $k + 2$ vertices get label $-i$. Suppose $f(x) = 1$ and $f(y) \neq 1$. Then $k = 2k - m$ or $k - 1 = 2k - m$ so that $k = m$ or $k = m - 1$. If $k = m$, label $v_1, v_2, ..., v_k$ with 1. Label the remaining vertices arbitrarily so that $k + 2$ vertices get label $-1, k + 2$ vertices get label i and $k + 1$ vertices get label $-i$. As $k = m - 2, m - 1$ or m, we have $n = 3m - 5, 3m - 1$ or $3m + 3$.

Subcase (iv). $f(u) \neq 1$ and $f(v) = 1$.

As in Subcase (iii), we get $k = n - 2, n - 1$ or n. As $m \leq n$, we have $n \leq 2$. □
Example 5.2.4. A group \(\{1, -1, i, -i\} \) cordial labeling of \(J(4, 5) \) is given in Fig. 5.4.

Theorem 5.2.5. The Jahangir graph \(J_{3,n}(n \geq 3) \) is group \(\{1, -1, i, -i\} \) cordial for all \(n \).

Proof. Let the vertices on the cycle be labeled as \(u_1, u_2, ..., u_{3n} \) and let the central vertex be labeled as \(w \). Assume that \(w \) is adjacent to \(u_i(i \equiv 1(mod 3)) \). Number of vertices = \(3n + 1 \) and number of edges = \(4n \). Group \(\{1, -1, i, -i\} \) cordial labelings for \(n = 3 \) and \(n = 4 \) are given in Table 5.8. Suppose \(n \geq 5 \). Let \(f : V(J_{3,n}) \to \{1, -1, i, -i\} \) be a function.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(u_1)</th>
<th>(u_2)</th>
<th>(u_3)</th>
<th>(u_4)</th>
<th>(u_5)</th>
<th>(u_6)</th>
<th>(u_7)</th>
<th>(u_8)</th>
<th>(u_9)</th>
<th>(u_{10})</th>
<th>(u_{11})</th>
<th>(u_{12})</th>
<th>(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>(i)</td>
<td>(i)</td>
<td>(-i)</td>
<td>(-i)</td>
<td>(-i)</td>
<td>(-i)</td>
<td>(-i)</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>(-i)</td>
<td>(-i)</td>
<td>(-i)</td>
<td>(-i)</td>
<td>(-i)</td>
<td>(-i)</td>
<td>(-i)</td>
</tr>
</tbody>
</table>

Table 5.8

Case 1. \(3n + 1 \equiv 0(mod 4) \).

Let \(3n + 1 = 4k(k \in \mathbb{Z}) \). Each vertex label should appear \(k \) times and each edge label should appear \(\frac{8k-2}{3} \) times in a group \(\{1, -1, i, -i\} \) cordial labeling. Note that \(k = 3r + 1(r \in \mathbb{Z}, r \geq 1) \). So the vertices on the Cycle are \(u_i(1 \leq i \leq 12r + 3) \) where \(u_i(i \equiv 1(mod 3), 1 \leq i \leq 12r + 3) \) are of degree 3 and others are of degree 2. Label the vertices \(u_i(1 \leq i \leq 6r - 2), i \equiv 1(mod 3) \) with 1. Also choose \(r + 1 \) vertices among \(u_i(6r \leq i \leq 12r + 3, i \not\equiv 1(mod 3)) \) and give them label 1. Label the remaining vertices arbitrarily so that \(k \) of them get label \(-1, k \) of them get label \(i \) and \(k \) of them get label \(-i\). Number of edges with label \(1 = 3 \times 2r + (r + 1)2 = \frac{8k-2}{3} \).

Case 2. \(3n + 1 \equiv 1(mod 4) \).

Let \(3n + 1 = 4k + 1(k \in \mathbb{Z}) \). Three vertex labels should appear \(k \)
times and one vertex label should appear \(k + 1\) times. Each edge label should appear \(\frac{8k}{3}\) times in a group \(\{1, -1, i, -i\}\) cordial labeling. In this case \(k = 3r (r \in \mathbb{Z}, r \geq 2)\). Now the vertices on the Cycle are \(u_i (1 \leq i \leq 12r)\) where \(u_i (i \equiv 1 (mod 3))\) are of degree 3 and others are of degree 2. Label the vertices \(u_i (1 \leq i \leq 6r - 8)\) with 1. Also choose \(r + 3\) vertices \(u_i (6r - 6 \leq l \leq 12r, i \not\equiv 1 (mod 3))\) and give them label 1. Label the remaining vertices arbitrarily so that \(k\) of them get label \(-1\), \(k\) of them get label \(i\) and \(k\) of them get label \(-i\).

Case 3. \(3n + 1 \equiv 2 (mod 4)\)

Let \(3n + 1 = 4k + 2 (k \in \mathbb{Z})\). Two vertex labels should appear \(k\) times and 2 vertex labels should appear \(k + 1\) times. Each edge label should appear \(2n = \frac{8k + 2}{3}\) times. Now \(k = 3r + 2 (r \geq 1, r \in \mathbb{Z})\). The vertices on the Cycle are \(u_i (1 \leq i \leq 12r + 9)\). Label the vertices \(u_i (1 \leq i \leq 6r - 2, i \equiv 1 (mod 3))\) with 1. Also choose \(r + 3\) vertices among \(u_i (6r \leq i \leq 12r + 9, l \not\equiv 1 (mod 3))\) and give them label 1. Label the remaining vertices arbitrarily so that \(k + 1\) vertices get label \(-1\), \(k\) vertices get label \(i\) and \(k\) vertices get label \(-i\). Number of edges with label 1 = \(3 \times (2r - 2) + (r + 3)2 = 8r\).

Case 4. \(3n + 1 \equiv 3 (mod 4)\)

Let \(3n + 1 = 4k + 3 (k \in \mathbb{Z})\). Three vertex labels should appear \(k + 1\) times and 1 vertex label should appear \(k\) times. Each edge label should appear \(\frac{8k + 4}{3}\) times. Now \(k = 3r + 1 (r \geq 1, r \in \mathbb{Z})\). The vertices on the Cycle are \(u_i (1 \leq i \leq 12r + 6)\). Label the vertices \(u_i (1 \leq i \leq 6r - 2, l \equiv (mod 3))\) with 1. Also choose \(r + 2\) vertices among \(u_i (6r \leq i \leq 12r + 6, l \not\equiv i (mod 3))\) and give them label 1. Label the remaining vertices arbitrarily so that \(k + 1\) vertices get label \(-1\), \(k + 1\) vertices get label \(i\) and \(k\) vertices get label \(-i\). Number of edges with label 1 = \(2r \times 3 + 2(r + 2) = 8r + 4\). Table 5.9 shows that in all cases, the given labeling is group \(\{1, -1, i, -i\}\) cordial.

\[\square\]
\[3n + 1 \quad v_f(1) \quad v_f(-1) \quad v_f(i) \quad v_f(-i) \quad e_f(0) \quad e_f(1) \\
4k \quad k \quad k \quad k \quad \frac{8k-2}{3} \quad \frac{8k-2}{3} \\
4k + 1 \quad k + 1 \quad k \quad k \quad \frac{8k}{3} \quad \frac{8k}{3} \\
4k + 2 \quad k + 1 \quad k + 1 \quad k \quad \frac{8k+2}{3} \quad \frac{8k+2}{3} \\
4k + 3 \quad k + 1 \quad k + 1 \quad k \quad \frac{8k+4}{3} \quad \frac{8k+4}{3} \\

Table 5.9

Example 5.2.6. A group \{1, -1, i, -i\} cordial labeling of \(J_{3,5}\) is given in Fig. 5.5.

![Fig. 5.5](image)

5.3 Group \{1, -1, i, -i\} cordial labeling of Dumbbell graph and Lotus inside a circle

Theorem 5.3.1. The Dumbbell graph \(Db_n\) is group \{1, -1, i, -i\} cordial for all \(n\).

Proof. Number of vertices in \(Db_n\) is \(2n\) and number of edges is \(2n+1\).
Let $f : V(Db_n) \to \{1, -1, i, -i\}$ be a function.

Case 1. n is even.

Let $n = 2k, k \geq 2, k \in \mathbb{Z}$.

In a group $\{1, -1, i, -i\}$ cordial labeling, each vertex label should appear k times. One edge label should appear $2k$ times and another $2k + 1$ times. Define a labeling f as follows:

Label $u_1, u_3, u_5, ..., u_{n-1}$ with 1. Label the remaining vertices arbitrarily so that k of them get label -1, k of them get label i and k of them get label $-i$. Number of edges with label 1 is $3 + 2(k-1) = 2k + 1$.

Case 2. n is odd.

Let $n = 2k + 1, k \geq 1, k \in \mathbb{Z}$.

In a group $\{1, -1, i, -i\}$ cordial labeling, two vertex labels should appear k times and two vertex labels should appear $k + 1$ times. One edge label should appear $2k + 1$ times and another $2k + 2$ times. Define a labeling f as follows:

Label $u_1, u_3, u_5, ..., u_{n-1}$ with 1. Label the remaining vertices arbitrarily so that k of them get label -1, $k + 1$ of them get label i and $k + 1$ of them get label $-i$. Number of edges with label 1 is $3 + 2(k-1) = 2k + 1$.

Table 5.10 shows that in all cases, the given labeling is group $\{1, -1, i, -i\}$ cordial.

<table>
<thead>
<tr>
<th>n</th>
<th>f_1</th>
<th>f_{-1}</th>
<th>f_i</th>
<th>f_{-i}</th>
<th>f_0</th>
<th>f_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2k$</td>
<td>k</td>
<td>k</td>
<td>k</td>
<td>k</td>
<td>$2k$</td>
<td>$2k + 1$</td>
</tr>
<tr>
<td>$2k + 1$</td>
<td>k</td>
<td>k</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>$2k + 2$</td>
<td>$2k + 1$</td>
</tr>
</tbody>
</table>

Table 5.10

Example 5.3.2. A group $\{1, -1, i, -i\}$ cordial labeling of Db_6 is given in Fig. 5.6.
Theorem 5.3.3. The graph Lotus inside a circle LC_n is group $\{1, -1, i, -i\}$ cordial for every n.

Proof. Let u be the center of $K_{1,n}$ and $u_1, u_2, ..., u_n$ be the pendent vertices of $K_{1,n}$. Let $w_1, w_2, ..., w_n$ be the vertices of the cycle C_n such that u_i is adjacent with w_i and $w_{(i+1)(mod \ n)}$. The graph LC_n has $2n+1$ vertices and $4n$ edges.

Let $f : V(LC_n) \rightarrow \{1, -1, i, -i\}$ be a function.

Case 1. $n \equiv 0(mod \ 4)$

Let $n = 4k \ , k \geq 1, k \in \mathbb{Z}$. Label the vertices $w_1, w_3, ..., w_{n-1}$ with 1. This induces edge label 1 to $8k$ edges. Label the remaining vertices arbitrarily so that $2k$ vertices get label -1, $2k$ vertices get label i and $2k+1$ vertices get label $-i$.

Case 2. $n \equiv 1(mod \ 4)$

Let $n = 4k + 1 \ , k \geq 1, k \in \mathbb{Z}$. Label the vertices $u_1, w_1, w_3, ..., w_{n-2}$ with 1. This induces edge label 1 to $4(\frac{n-1}{2}) + 2 = 8k + 2$ edges. Label the remaining vertices arbitrarily so that $2k+1$ vertices get label -1, $2k+1$ vertices get label i and $2k + 1$ vertices get label $-i$.

Case 3. $n \equiv 2(mod \ 4)$

Let $n = 4k + 2 \ , k \geq 1, k \in \mathbb{Z}$. Label the vertices $w_1, w_3, ..., w_{n-1}$ with 1. This induces edge label 1 to $(2k+1)4 = 8k + 4$ edges. Label the remaining vertices arbitrarily so that $2k + 1$ vertices get label -1, $2k$ vertices get label i, $2k+1$ vertices get label $-i$, and $2k+1$ vertices get label $-i$.
2k + 1 vertices get label i and 2k + 2 vertices get label −i.

<table>
<thead>
<tr>
<th>n</th>
<th>v_f(1)</th>
<th>v_f(-1)</th>
<th>v_f(i)</th>
<th>v_f(-i)</th>
<th>e_f(0)</th>
<th>e_f(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4k, k ≥ 1, k ∈ ℤ</td>
<td>2k</td>
<td>2k</td>
<td>2k</td>
<td>2k + 1</td>
<td>8k</td>
<td>8k</td>
</tr>
<tr>
<td>4k + 1, k ≥ 1, k ∈ ℤ</td>
<td>2k + 1</td>
<td>2k + 1</td>
<td>2k + 1</td>
<td>2k</td>
<td>8k + 2</td>
<td>8k + 2</td>
</tr>
<tr>
<td>4k + 2, k ≥ 1, k ∈ ℤ</td>
<td>2k + 1</td>
<td>2k + 1</td>
<td>2k + 1</td>
<td>2k + 2</td>
<td>8k + 4</td>
<td>8k + 4</td>
</tr>
<tr>
<td>4k + 3, k ≥ 0, k ∈ ℤ</td>
<td>2k + 2</td>
<td>2k + 2</td>
<td>2k + 2</td>
<td>2k + 1</td>
<td>8k + 6</td>
<td>8k + 6</td>
</tr>
</tbody>
</table>

Table 5.11

Case 4. n ≡ 3(mod 4)

Let n = 4k + 3, k ≥ 0, k ∈ ℤ. Label the vertices u_1, w_1, w_3, ..., w_{n-2} with 1. This induces edge label 1 to (2k+1)4+2 = 8k+6 edges. Label the remaining vertices arbitrarily so that 2k + 2 vertices get label −1, 2k + 2 vertices get label i and 2k + 1 vertices get label −i.

Table 5.11 shows that the above labelings are group \{1, −1, i, −i\} cordial.

Example 5.3.4. A group \{1, −1, i, −i\} cordial labeling of LC_b is given in Fig. 5.7.