Chapter 3

Group \(\{1, -1, i, -i\} \) cordial labeling of some bipartite graphs and Wheel related graphs

In this Chapter, we discuss the group \(\{1, -1, i, -i\} \) cordial labeling of some Complete Bipartite graphs and Wheel related graphs. We characterize \(K_{2,n}, K_{3,n} \) and \(K_{4,n} \) that are group \(\{1, -1, i, -i\} \) cordial. We prove that Helm, closed Helm, Gear graph, Web graph, Flower graph, Sunflower graph are all group \(\{1, -1, i, -i\} \) cordial. We further characterize Wheels that are group \(\{1, -1, i, -i\} \) cordial.

3.1 Group \(\{1, -1, i, -i\} \) cordial labeling of some bipartite graphs

Theorem 3.1.1. The Complete Bipartite graph \(K_{2,n} \) is group \(\{1, -1, i, -i\} \) cordial if and only if \(n \leq 5 \).

Proof. Let \(V(K_{2,n}) = V_1 \cup V_2 \), where \(V_1 = \{u_1, u_2\} \) and \(V_2 = \{v_1, v_2, ..., v_n\} \). \(E(K_{2,n}) = \{u_1v_i, u_2v_i, 1 \leq i \leq n\} \). The proof is divided into two cases.

Case 1. \(n \leq 5 \)
The group \(\{1, -1, i, -i\} \) cordial labeling of \(K_{2,n} \) is given in Table 3.1. In all these cases, exactly \(n \) edges receive the label 1 and \(n \) edges receive the label 0.

Case 2. \(n > 5 \)

Suppose \(f \) is a group \(\{1, -1, i, -i\} \) cordial labeling of \(K_{2,n} \).

Subcase (i). \(f(u_1) = 1 \) or \(f(u_2) = 1 \).

In this case, the number of vertices is at least 8. Therefore, every label has to be used at least two times. Since \(f(u_1) = 1 \), already \(n \) edges have received label 1. To maintain the edge condition, no other vertex can be given the label 1.

Subcase (ii). \(f(u_1) \neq 1 \) and \(f(u_2) \neq 1 \).

Clearly, \(v_f(1) = \lceil \frac{p}{4} \rceil \) or \(\lceil \frac{p}{4} \rceil - 1 \) and \(e_f(1) = 2 \lceil \frac{p}{4} \rceil \) or \(2 (\lceil \frac{p}{4} \rceil - 1) \). Therefore, the label 1 should be allocated to the vertices of \(V_2 \). This contradicts the edge condition of group \(\{1, -1, i, -i\} \) cordial labeling.

Theorem 3.1.2. The Complete Bipartite graph \(K_{3,n} \) is group \(\{1, -1, i, -i\} \) cordial if and only if either \(n \leq 9 \) or \(n \geq 10 \) and \(n \neq 4k + 2, k \geq 2, k \in \mathbb{Z} \).
Proof. Assume that the complete bipartite graph $K_{3,n} = (V_1, V_2)$ is group \{1, -1, i, -i\} cordial. Let u_1, u_2, u_3 be the vertices of V_1 and let $V_2 = \{v_1, v_2, ..., v_n\}$. Suppose $n \geq 10$. We claim that $n \neq 4k + 2, k \geq 2, k \in \mathbb{Z}$. Suppose $n = 4k + 2, k \geq 2, k \in \mathbb{Z}$. Number of vertices is $n + 3 = 4k + 5$ and number of edges is $3n = 12k + 6$. Let f be a group \{1, -1, i, -i\} cordial labeling of $K_{3,n}$.

We need $6k + 3$ edges with label 1. If $k + 1$ or $k + 2$ vertices that receive label 1 are chosen from V_2, we get $3k + 3$ or $3k + 6$ edges with label 1 accordingly. But $k \geq 2$ and so $6k + 3 \geq 3k + 6$ and also $6k + 3 \geq 3k + 3$. Hence at least one vertex from V_1 has to be given label 1. Certainly 2 vertices from V_1 cannot receive label 1 as that gives $2n = 8k + 4$ edges with label 1. So one vertex in V_1 and k or $k + 1$ vertices from V_2 are to be given label 1. One vertex in V_1 gives $4k + 2$ edges with label 1. As every choice of a vertex in V_2 gives only 2 edges with label 1 and as $(6k + 3) - (4k + 2) = 2k + 1$ is odd, there is no group \{1, -1, i, -i\} cordial labeling. Thus $n \neq 4k + 2$.

Conversely, assume that either $n \leq 9$ or $n \geq 10$ and $n \neq 4k + 2, k \geq 2, k \in \mathbb{Z}$. For $n \leq 9$, group \{1, -1, i, -i\} cordial labeling of $K_{3,n}$ is given in Table 3.2.

```
<table>
<thead>
<tr>
<th>n</th>
<th>u_1</th>
<th>u_2</th>
<th>u_3</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
<th>v_5</th>
<th>v_6</th>
<th>v_7</th>
<th>v_8</th>
<th>v_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>i</td>
<td>-i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>i</td>
<td>i</td>
<td>-i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>i</td>
<td>i</td>
<td>-i</td>
<td>-i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>i</td>
<td>-i</td>
<td>-i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>i</td>
<td>-i</td>
<td>-i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>i</td>
<td>-i</td>
<td>-i</td>
<td>-i</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>i</td>
<td>-i</td>
<td>-i</td>
<td>-i</td>
<td>-i</td>
</tr>
</tbody>
</table>
```

Table 3.2

Table 3.3 shows that each is a group \{1, -1, i, -i\} cordial labeling. Suppose $n \geq 10$ and $n \neq 4k + 2, k \geq 2, k \in \mathbb{Z}$. Let $f : V(K_{3,n}) \rightarrow \{1, -1, i, -i\}$ be a function.

Case 1. $n \equiv 0(mod 4)$
Let $n = 4k$, $k \geq 3$, $k \in \mathbb{Z}$.
Define a labeling f as follows:
\[
\begin{align*}
 f(u_1) &= f(v_1) = f(v_2) = \cdots = f(v_k) = 1, \\
 f(u_2) &= f(v_{k+1}) = \cdots = f(v_{2k}) = -1, \\
 f(u_3) &= f(v_{2k+1}) = \cdots = f(v_{3k}) = i, \\
 f(v_{3k+1}) &= \cdots = f(v_{4k}) = -i.
\end{align*}
\]

Case 2. $n \equiv 1(\text{mod } 4)$

Let $n = 4k + 1$, $k \geq 3$, $k \in \mathbb{Z}$.
Define a labeling f as follows:
\[
\begin{align*}
 f(u_1) &= f(v_1) = f(v_2) = \cdots = f(v_k) = 1, \\
 f(u_2) &= f(v_{k+1}) = \cdots = f(v_{2k}) = -1, \\
 f(u_3) &= f(v_{2k+1}) = \cdots = f(v_{3k}) = i, \\
 f(v_{3k+1}) &= \cdots = f(v_{4k}) = f(v_{4k+1}) = -i.
\end{align*}
\]

Case 3. $n \equiv 3(\text{mod } 4)$

Let $n = 4k + 3$, $k \geq 2$, $k \in \mathbb{Z}$.
Define a labeling f as follows:
\[
\begin{align*}
 f(u_1) &= f(v_1) = f(v_2) = \cdots = f(v_{k+1}) = 1, \\
 f(u_2) &= f(v_{k+2}) = f(v_{k+3}) = \cdots = f(v_{2k+2}) = -1, \\
 f(u_3) &= f(v_{2k+3}) = \cdots = f(v_{3k+2}) = i, \\
 f(v_{3k+3}) &= \cdots = f(v_{4k}) = f(v_{4k+3}) = -i.
\end{align*}
\]

Table 3.4 shows that in all 3 cases, f is a group $\{1, -1, i, -i\}$ cor-
dial labeling.

<table>
<thead>
<tr>
<th>nature of n</th>
<th>$v_f(1)$</th>
<th>$v_f(-1)$</th>
<th>$v_f(i)$</th>
<th>$v_f(-i)$</th>
<th>$e_f(0)$</th>
<th>$e_f(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 4k, k \geq 3$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>k</td>
<td>$6k$</td>
<td>$6k$</td>
</tr>
<tr>
<td>$n = 4k + 1, k \geq 3$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>$6k + 2$</td>
<td>$6k + 1$</td>
</tr>
<tr>
<td>$n = 4k + 3, k \geq 2$</td>
<td>$k + 2$</td>
<td>$k + 2$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>$6k + 4$</td>
<td>$6k + 5$</td>
</tr>
</tbody>
</table>

Table 3.4

Example 3.1.3. An illustration for $K_{3,7}$ is given in Fig 3.1.

Theorem 3.1.4. $K_{4,n}$ is group $\{1,-1,i,-i\}$ cordial if and only if $n \in \{4,5,6,7,9\}$.

Proof. Assume that the complete bipartite graph $K_{4,n} = (V_1, V_2)$ is group $\{1,-1,i,-i\}$ cordial. Let u_1, u_2, u_3, u_4 be the vertices of V_1 and let $V_2 = \{v_1, v_2, \ldots, v_n\}$. Suppose f is a group $\{1,-1,i,-i\}$ cordial labeling of $K_{4,n}$.

Case 1. $n \equiv 0 (mod 4)$

Let $n = 4k, k \geq 1, k \in \mathbb{Z}$. Each vertex label should appear $k + 1$ times and each edge label should appear $8k$ times. As $k \geq 1$, we have $k + 1 \geq 2$. If $k + 1 > 2$ and if $k + 1$ vertices to get label 1 are chosen in $\{v_1, \ldots, v_n\}$, we need to have $4(k + 1) = 8k \Rightarrow k = 1$, which is a contradiction. So at least v_1 should be given label 1. If v_2 is also given label 1, we have 2 vertices of label 1 yielding $8k$ edges of label 1, which
is again a contradiction. So \(k \) vertices of label 1 are to be chosen from \(\{v_1, \ldots, v_n\} \). This gives \(3k \) edges with label 1. But \(3k = 4k \) is impossible. So \(k+1 > 2 \) is not possible. Thus \(k+1 = 2 \Rightarrow k = 1 \Rightarrow n = 4 \).

Case 2. \(n \equiv 1(\text{mod } 4) \)

Let \(n = 4k + 1, k \geq 1, k \in \mathbb{Z} \). We claim that \(k+1 \leq 3 \). Suppose \(k+1 \geq 4 \). If 2 \(u_i \)'s are given label 1, we get \(8k + 2 \) edges with label 1 by giving label 1 to just 2 vertices which contradicts the necessary condition. So at most one \(u_i \) is given label 1. If \(k+2 \) or \(k+1 \) vertices of \(\{v_1, v_2, \ldots, v_n\} \) are given label 1, we get \(4(k+2) \) or \(4(k+1) \) edges with label 1. So \(4k+8 = 8k+2 \) or \(4k+4 = 8k+2 \). Thus \(4k = 6 \) or \(4k = 2 \), both impossible. So one \(u_i \) is given label 1 and \(k \) or \(k+1 \) vertices of \(\{v_1, v_2, \ldots, v_n\} \) are given label 1. Accordingly, \(3k = 4k+1 \) or \(3(k+1) = 4k+1 \Rightarrow k = -1 \) or \(k = 2 \), both impossible. Thus \(k+1 \leq 3 \). If \(k+1 = 3, n = 9 \) and if \(k+1 = 2, n = 5 \).

Case 3. \(n \equiv 2(\text{mod } 4) \)

Let \(n = 4k + 2, k \geq 1, k \in \mathbb{Z} \). We claim that \(k+1 \leq 2 \). Suppose \(k+1 \geq 3 \). As in Cases 1 and 2, we need to give label 1 to exactly one \(u_i \). So \(k+1 \) or \(k \) vertices are to be chosen from \(\{v_1, v_2, \ldots, v_n\} \). Accordingly, \(3(k+1) = 4k+2 \) or \(3k = 4k+2 \) and so \(k = 1 \) or \(k = -2 \), both impossible. Thus \(k+1 = 2 \) and so \(n = 6 \).

Case 4. \(n \equiv 3(\text{mod } 4) \)

Let \(n = 4k + 3, k \geq 1, k \in \mathbb{Z} \). Suppose \(k+1 \geq 3 \). As in Cases 1 and 2, we need to give label 1 to exactly one \(u_i \). So \(k+1 \) or \(k \) vertices are to be chosen from \(\{v_1, v_2, \ldots, v_n\} \). Accordingly, \(3(k+1) = 4k+3 \) or \(3k = 4k+3 \) and so \(k = 0 \) or \(k = -3 \), both impossible. Thus \(k+1 = 2 \) and so \(n = 7 \). Thus \(n \in \{4, 5, 6, 7, 9\} \).

Conversely, assume that \(n \in \{4, 5, 6, 7, 9\} \). A group \(\{1, -1, i, -i\} \) cordial labeling of \(K_{4,n} \) in each case is given in Table 3.5.
3.2 Group \(\{1, -1, i, -i\} \) cordial labeling of Wheel related graphs

Theorem 3.2.1. The Wheel \(W_n \) is group \(\{1, -1, i, -i\} \) cordial if and only if \(3 \leq n \leq 6 \).

Proof. Let \(W_n = C_n + K_1 \), where \(C_n \) is the cycle \(u_1, u_2, ..., u_n, u_1 \) and \(V(K_1) = \{u\} \). For \(3 \leq n \leq 6 \), the group \(\{1, -1, i, -i\} \) cordial labeling of \(W_n \) is given in Table 3.6.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(u)</th>
<th>(u_1)</th>
<th>(u_2)</th>
<th>(u_3)</th>
<th>(u_4)</th>
<th>(u_5)</th>
<th>(u_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-i</td>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-1</td>
<td>-i</td>
<td>-1</td>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>-1</td>
<td>-i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>i</td>
<td>-i</td>
<td>-1</td>
<td>-i</td>
<td>i</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.6

Assume \(n > 6 \). Let \(n = 2t \). Suppose \(f \) is a group \(\{1, -1, i, -i\} \) cordial labeling of \(W_n \), \(n > 6 \).

Case 1. \(f(u) = 1 \).

Subcase(i). \(n \equiv 0, 1, 2 \pmod{4} \).
Let \(n = 4t \) or \(4t + 1 \) or \(4t + 2 \), \(v_f(1) = t \) or \(t + 1 \). The maximum possible edges with label 1 occurs only when we assign the label 1 to the cycle vertices alternatively. In this way, the possible number of cycle edges with label 1 is \(2t \) and the spokes with label 1 is \(t \). Thus \(e_f(1) \leq 3t \), a contradiction, since the size of the wheel is \(8t \).

Subcase(ii). \(n \equiv 3 \pmod{4} \).

Let \(n = 4t + 3 \). Then \(v_f(1) = t \). In this case, \(e_f(1) \leq 2(t - 1) + t - 1 \). So \(e_f(1) \leq 3t - 3 \), again a contradiction.

Case 2. \(f(u) \neq 1 \).

In this case, the possible edges with label 1 is only the cycle edges.

Subcase(i). \(n \equiv 0, 1, 2 \pmod{4} \).

Let \(n = 4t \) or \(4t + 1 \) or \(4t + 2 \) according as \(n \equiv 0(\text{mod} \ 4) \) or \(n \equiv 1(\text{mod} \ 4) \) or \(n \equiv 2(\text{mod} \ 4) \). Then \(v_f(1) = t \) or \(t + 1 \). Therefore \(e_f(1) \leq 2(t + 1) = 2t + 2 \), a contradiction.

Subcase(ii). \(n \equiv 3 \pmod{4} \).

Let \(n = 4t + 3 \). Then \(v_f(1) = t + 1 \). Here also \(e_f(1) \leq 2t + 2 \), a contradiction.

\(\Box\)

Theorem 3.2.2. All Helms are group \(\{1, -1, i, -i\} \) cordial.

Proof. Let \(H_n \) be the Helm with \(V(H_n) = \{u, u_i, v_i : 1 \leq i \leq n\} \) and \(E(H_n) = \{uu_i, u_iu_{i-1}, u_iv_i, u_nu_1 : 1 \leq i \leq n\} \). Note that \(H_n \) has \(2n + 1 \) vertices and \(3n \) edges. Let \(f : V(H_n) \rightarrow \{1, -1, i, -i\} \) be a function. As \(2n + 1 \) is always odd, we need to consider the following two cases.

Case 1. \(2n + 1 \equiv 1 \pmod{4} \).
Now $2n \equiv 0 \pmod{4}$ and $\lceil \frac{2n+1}{4} \rceil = \frac{2n}{4} + 1$. Moreover, $2n \equiv 0 \pmod{4}$ and so n is even. Let $i = \frac{2n}{4} - 1$. Assign the label 1 to the vertices $u_1, u_2, u_3, \ldots, u_i, v_{i+1}, v_{i+2}$. Label the remaining vertices arbitrarily in such a way that $i + 1$ vertices get label -1, $i + 1$ vertices get label i and $i + 1$ vertices get label $-i$. Number of edges with label $1 = 4 + 3(i - 1) + 2 = 3i + 3 = \frac{3n}{2}$.

![Graph](image)

Fig. 3.2

Case 2. $2n + 1 \equiv 3 \pmod{4}$.

Now $2n \equiv 2 \pmod{4}$ and so n is odd. As $\lceil \frac{2n+1}{4} \rceil = \frac{2n-2}{4} + 1$, 3 of the vertex labels should occur $\frac{2n-2}{4} + 1$ times and 1 vertex label should occur $\frac{2n-2}{4}$ times. Let $i = \frac{2n-2}{4}$. Assign the label 1 to the vertices $u_1, u_2, u_3, \ldots, u_i$. Label the remaining vertices arbitrarily in such a way that $i + 1$ vertices get label -1, $i + 1$ vertices get label i and $i + 1$ vertices get label $-i$. Number of edges with label
1 = 4 + 3(i - 1) = 3i + 1 = \frac{3n-1}{2}.

That this vertex labeling is a group \{1, -1, i, -i\} cordial labeling follows from Table 3.7.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Parity of n & \(v_f(1)\) & \(v_f(-1)\) & \(v_f(i)\) & \(v_f(-i)\) & \(e_f(1)\) & \(e_f(0)\) \\
\hline
\text{even} & \frac{2n}{4} + 1 & \frac{2n}{4} & \frac{2n}{4} & \frac{2n}{4} & \frac{3n}{2} & \frac{3n}{2} \\
\text{odd} & \frac{2n-2}{4} & \frac{2n+2}{4} & \frac{2n+2}{4} & \frac{2n+2}{4} & \frac{3n-1}{2} & \frac{3n+1}{2} \\
\hline
\end{tabular}
\caption{Table 3.7}
\end{table}

\textbf{Example 3.2.3.} Group \{1, -1, i, -i\} cordial labelings of \(H_6\) and \(H_7\) are given in Fig.3.2

\textbf{Theorem 3.2.4.} Closed Helm \(CH_n\) is group \{1, -1, i, -i\} cordial for every \(n\).

\textbf{Proof.} Number of vertices in \(CH_n = 2n + 1\) and number of edges in \(CH_n\) is \(4n\). Label the vertices of \(CH_n\) as follows:
Label of the center of the Wheel is \(u\). Label the \(n\) vertices of the rim of the Wheel by \(u_1, u_2, \ldots, u_n\) in order. Label the \(n\) pendent vertices of the Helm as \(v_1, v_2, \ldots, v_n\) in order so that \(u_i v_i\) is an edge for every \(i\), \(1 \leq i \leq n\).
Let \(f : V(CH_n) \to \{1, -1, i, -i\}\) be a function.

\textbf{Case 1.} \(n\) is odd.

Let \(n = 2k + 1\), \(k \geq 1\). Label the vertices \(u, v_1, v_2, \ldots, v_k\) by \(1\). Label the remaining vertices arbitrarily so that \(k + 1\) of them get label \(-1\), \(k + 1\) of them get label \(i\) and \(k\) of them get label \(-i\).

\textbf{Case 2.} \(n\) is even.

Let \(n = 2k\), \(k \geq 2\).
Label the vertices $u_1, u_3, u_5, ..., u_{2k-1}$ by 1. Label the remaining vertices arbitrarily so that k of them get label -1, k of them get label i and $k + 1$ of them get label $-i$.

It follows from Table 3.8 that all these labelings are group $\{1, -1, i, -i\}$ cordial. □

<table>
<thead>
<tr>
<th>Parity of n</th>
<th>$v_f(1)$</th>
<th>$v_f(-1)$</th>
<th>$v_f(i)$</th>
<th>$v_f(-i)$</th>
<th>$e_f(0)$</th>
<th>$e_f(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>odd, $n = 2k + 1$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>k</td>
<td>$4k + 2$</td>
<td>$4k + 2$</td>
</tr>
<tr>
<td>even, $n = 2k$</td>
<td>k</td>
<td>k</td>
<td>k</td>
<td>$k + 1$</td>
<td>$4k$</td>
<td>$4k$</td>
</tr>
</tbody>
</table>

Table 3.8

Example 3.2.5. A group $\{1, -1, i, -i\}$ cordial labeling of CH_5 is given in Fig. 3.3.

![Fig. 3.3](image)

Theorem 3.2.6. The Web graph $W(2, n)$ is group $\{1, -1, i, -i\}$ cordial for every n.

Proof. $W(2, n)$ has $3n + 1$ vertices and $5n$ edges. Label the center vertex of the wheel as u, the rim vertices of the wheel as $u_1, u_2, ..., u_n$ in
order, the vertices of the outer cycle of the closed Helm as \(v_1, v_2, \ldots, v_n \)
in order and the pendent vertices as \(w_1, w_2, \ldots, w_n \) in order so that for
\(1 \leq i \leq n \), \(u_i \) is adjacent with \(v_i \) and \(v_i \) is adjacent with \(w_i \).
Let \(f : V(W(2, n)) \to \{1, -1, i, -i\} \) be a function.

Case 1. \(n \) is odd.

Let \(n = 2k + 1(k \geq 1, k \in \mathbb{Z}) \).

Subcase(i). \(k \) is even.

Now each vertex label should appear \((3k/2)+1\) times. Label \(u, u_1, u_2, \ldots, u_{3k/2} \) with 1. Label the remaining vertices arbitrarily so that \(\frac{3k}{2} + 1 \) of them get label \(-1\), \(\frac{3k}{2} + 1 \) of them get label \(i \) and \(\frac{3k}{2} + 1 \) of them get label \(-i\).

Subcase(ii). \(k \) is odd.

Label \(u, u_1, u_2, \ldots, u_{3k+1}/2 \) with 1. Label the remaining vertices arbitrarily so that \(\frac{3k+1}{2} \) of them get label \(-1\), \(\frac{3k+1}{2} \) of them get label \(i \) and \(\frac{3k+1}{2} \) of them get label \(-i\).

Case 2. \(n \) is even.

Let \(n = 2k(k \geq 2, k \in \mathbb{Z}) \).

Subcase(i). \(k \) is even.

As \(k \) is even, \(6k \equiv 0(mod\ 4) \) and so \(6k + 1 \equiv 1(mod\ 4) \). Label \(u, u_1, u_2, \ldots, u_{3k}/2-1, u_{3k}/2 \) with 1. Label the remaining vertices arbitrarily so that \(\frac{3k}{2} \) of them get label \(-1\), \(\frac{3k}{2} \) of them get label \(i \) and \(\frac{3k}{2} \) of them get label \(-i\).

Subcase(ii). \(k \) is odd.
As $6k \equiv 2 \mod 4$, $6k + 1 \equiv 3 \mod 4$. Label $u, u_1, u_2, \ldots, u_{\frac{3k-1}{2}}$ with 1. Label the remaining vertices arbitrarily so that $\frac{3k+1}{2}$ of them get label -1, $\frac{3k+1}{2}$ of them get label i and $\frac{3k-1}{2}$ of them get label $-i$. Table 3.9 and Table 3.10 shows that in all cases, the labelings are group \{1, -1, i, -i\} cordial.

\[
\begin{array}{|c|c|c|c|c|}
\hline
n & v_f(1) & v_f(-1) & v_f(i) & v_f(-i) \\
\hline
n = 2k + 1, k \text{ is even} & \frac{3k}{2} + 1 & \frac{3k}{2} + 1 & \frac{3k}{2} + 1 & \frac{3k}{2} + 1 \\
\hline
n = 2k + 1, k \text{ is odd} & \lfloor \frac{3k+2}{2} \rfloor & \lfloor \frac{3k+2}{2} \rfloor & \lfloor \frac{3k+2}{2} \rfloor & \lfloor \frac{3k+2}{2} \rfloor \\
\hline
n = 2k, k \text{ is even} & \frac{3k}{2} + 1 & \frac{3k}{2} & \frac{3k}{2} & \frac{3k}{2} \\
\hline
n = 2k, k \text{ is odd} & \frac{3k+1}{2} & \frac{3k+1}{2} & \frac{3k+1}{2} & \frac{3k-1}{2} \\
\hline
\end{array}
\]

Table 3.9

\[
\begin{array}{|c|c|c|}
\hline
n & e_f(0) & e_f(1) \\
\hline
n = 2k + 1, k \text{ is even} & 5k + 3 & 5k + 2 \\
\hline
n = 2k + 1, k \text{ is odd} & 5k + 2 & 5k + 3 \\
\hline
n = 2k, k \text{ is even} & 5k & 5k \\
\hline
n = 2k, k \text{ is odd} & 5k & 5k \\
\hline
\end{array}
\]

Table 3.10

Example 3.2.7. A group \{1, -1, i, -i\} cordial labeling of $W(2, 5)$ is given in Fig. 3.4.
Theorem 3.2.8. The Gear graph G_n is group $\{1, -1, i, -i\}$ cordial for every n.

Proof. Number of vertices of G_n is $2n + 1$ and number of edges is $3n$. Let $f : V(G_n) \rightarrow \{1, -1, i, -i\}$ be a function.

Label the center vertex of the wheel by u, the n vertices on the rim of the wheel by $u_1, u_2, ..., u_n$ in order and the n newly added vertices by $v_1, v_2, ..., v_n$ in order so that for $1 \leq i \leq n - 1$, v_i subdivides the edge u_iu_{i+1} and v_n subdivides the edge u_nu_1.

Case 1. n is odd.

Let $n = 2k + 1, k \geq 1$. Label the vertices $u_1, u_2, u_3, ..., u_k$ and v_{k+1} by 1. Label the remaining vertices arbitrarily so that $k + 1$ of them get label -1, $k + 1$ of them get label i and $k + 1$ of them get label $-i$.

Fig. 3.4
Case 2. n is even.

Let $n = 2k, k \geq 2$.
Label the vertices $u_1, u_2, u_3, ..., u_k$ by 1. Label the remaining vertices arbitrarily so that k of them get label -1, k of them get label i and $k + 1$ of them get label $-i$.

Table 3.11 shows that f is a group \(\{1, -1, i, -i\} \) cordial labeling.

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Parity of } n & v_f(1) & v_f(-1) & v_f(i) & v_f(-i) & e_f(0) & e_f(1) \\
\hline
\text{odd, } n = 2k + 1, k \geq 1 & k + 1 & k + 1 & k + 1 & k & 3k + 1 & 3k + 2 \\
\text{even, } n = 2k, k \geq 2 & k & k & k & k + 1 & 3k & 3k \\
\hline
\end{array}
\]

Table 3.11

Example 3.2.9. A group \(\{1, -1, i, -i\} \) cordial labeling of G_b is given in Fig. 3.5.
Theorem 3.2.10. The Flower graph $F_l\, n$ is group $\{1, -1, i, -i\}$ cordial for every n.

Proof. Let u be the center of the wheel $W\, n$. Let $u_1, u_2, ..., u_n$ be the vertices on the cycle of $W\, n$ and $v_1, v_2, ..., v_n$ be the pendent vertices of the Helm such that v_i is adjacent to u_i for $1 \leq i \leq n$. Number of vertices in $F_l\, n$ is $2n + 1$ and number of edges is $4n$.

Let $f : V (F_l\, n) \to \{1, -1, i, -i\}$ be a function.

Case 1. $n \equiv 0 (mod 4)$.

Let $n = 4k, k \geq 1, k \in \mathbb{Z}$.

In a group $\{1, -1, i, -i\}$ cordial labeling, three of the vertex labels should appear $2k$ times and one vertex label should appear $2k + 1$ times. Each edge label should appear $8k$ times. Define a labeling f as follows:

Label $u_1, u_3, u_5, ..., u_{2k}$ with 1. Label the remaining vertices arbitrarily so that $2k$ of them get label -1, $2k$ of them get label i and $2k + 1$ of them get label $-i$. Number of edges with label 1 is $4(2k) = 8k$.

Case 2. $n \equiv 1 (mod 4)$.

Let $n = 4k + 1, k \geq 1, k \in \mathbb{Z}$.

In a group $\{1, -1, i, -i\}$ cordial labeling, one vertex label should appear $2k$ times and three other vertex labels should appear $2k + 1$ times. Each edge label should appear $8k + 2$ times. Define a labeling f as follows:

Label $u_1, u_3, u_5, ..., u_{2k}, v_2$ with 1. Label the remaining vertices arbitrarily so that $2k + 1$ of them get label -1, $2k + 1$ of them get label i and $2k$ of them get label $-i$. Number of edges with label 1 is $4(2k) + 2 = 8k + 2$.

Case 3. $n \equiv 2 (mod 4)$.

Let $n = 4k + 2, k \geq 1, k \in \mathbb{Z}$.

40
In a group \(\{1, -1, i, -i\}\) cordial labeling, three of the vertex labels should appear \(2k + 1\) times and one vertex label should appear \(2k + 2\) times. Each edge label should appear \(8k + 4\) times. Define a labeling \(f\) as follows:
Label \(u_1, u_3, u_5, \ldots, u_{n-1}\) with 1. Label the remaining vertices arbitrarily so that \(2k + 1\) of them get label \(-1\), \(2k + 1\) of them get label \(i\) and \(2k + 2\) of them get label \(-i\). Number of edges with label 1 is \(4(2k + 1) = 8k + 4\).

Case 4. \(n \equiv 3 (mod \ 4)\).

Let \(n = 4k + 3, k \geq 0, k \in \mathbb{Z}\).
In a group \(\{1, -1, i, -i\}\) cordial labeling, three vertex labels should appear \(2k + 2\) times and one vertex label should appear \(2k + 1\) times. Each edge label should appear \(8k + 6\) times. Define a labeling \(f\) as follows:
Label \(u_1, u_3, u_5, \ldots, u_{n-2}, v_2\) with 1. Label the remaining vertices arbitrarily so that \(2k + 2\) of them get label \(-1\), \(2k + 2\) of them get label \(i\) and \(2k + 1\) of them get label \(-i\). Number of edges with label 1 is \(4(2k + 1) + 2 = 8k + 6\).

Table 3.12 shows that in all cases, the given labeling is group \(\{1, -1, i, -i\}\) cordial.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(v_f(1))</th>
<th>(v_f(-1))</th>
<th>(v_f(i))</th>
<th>(v_f(-i))</th>
<th>(e_f(0))</th>
<th>(e_f(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4k, k \geq 1, k \in \mathbb{Z})</td>
<td>(2k)</td>
<td>(2k)</td>
<td>(2k)</td>
<td>(2k + 1)</td>
<td>(8k)</td>
<td>(8k)</td>
</tr>
<tr>
<td>(4k + 1, k \geq 1, k \in \mathbb{Z})</td>
<td>(2k + 1)</td>
<td>(2k + 1)</td>
<td>(2k + 1)</td>
<td>(2k)</td>
<td>(8k + 2)</td>
<td>(8k + 2)</td>
</tr>
<tr>
<td>(4k + 2, k \geq 1, k \in \mathbb{Z})</td>
<td>(2k + 1)</td>
<td>(2k + 1)</td>
<td>(2k + 1)</td>
<td>(2k + 2)</td>
<td>(8k + 4)</td>
<td>(8k + 4)</td>
</tr>
<tr>
<td>(4k + 3, k \geq 0, k \in \mathbb{Z})</td>
<td>(2k + 2)</td>
<td>(2k + 2)</td>
<td>(2k + 2)</td>
<td>(2k + 1)</td>
<td>(8k + 6)</td>
<td>(8k + 6)</td>
</tr>
</tbody>
</table>

Table 3.12

Example 3.2.11. A group \(\{1, -1, i, -i\}\) cordial labeling of \(Fl_6\) is given in Fig.3.6.
Theorem 3.2.12. The Sunflower graph \(SF_n \) is group \(\{ 1, -1, i, -i \} \) cordial for every \(n \).

Proof. Let \(u \) be the center of the wheel and \(u_1, u_2, ..., u_n \) be the vertices on the cycle of the wheel. Let \(v_1, v_2, ..., v_n \) be the additional vertices so that \(v_i \) is joined by edges to \(u_i, u_{i+1} \) where \(i + 1 \) is taken modulo \(n \). Number of vertices in \(SF_n \) is \(2n + 1 \) and number of edges is \(4n \).

Let \(f : V(SF_n) \to \{ 1, -1, i, -i \} \) be a function.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(v_f(1))</th>
<th>(v_f(-1))</th>
<th>(v_f(i))</th>
<th>(v_f(-i))</th>
<th>(e_f(0))</th>
<th>(e_f(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4k, k \geq 1, k \in \mathbb{Z})</td>
<td>2k</td>
<td>2k</td>
<td>2k</td>
<td>2k + 1</td>
<td>8k</td>
<td>8k</td>
</tr>
<tr>
<td>(4k + 1, k \geq 1, k \in \mathbb{Z})</td>
<td>2k + 1</td>
<td>2k + 1</td>
<td>2k + 1</td>
<td>2k</td>
<td>8k + 2</td>
<td>8k + 2</td>
</tr>
<tr>
<td>(4k + 2, k \geq 1, k \in \mathbb{Z})</td>
<td>2k + 1</td>
<td>2k + 1</td>
<td>2k + 1</td>
<td>2k + 2</td>
<td>8k + 4</td>
<td>8k + 4</td>
</tr>
<tr>
<td>(4k + 3, k \geq 0, k \in \mathbb{Z})</td>
<td>2k + 2</td>
<td>2k + 2</td>
<td>2k + 2</td>
<td>2k + 1</td>
<td>8k + 6</td>
<td>8k + 6</td>
</tr>
</tbody>
</table>

Table 3.13

Case 1. \(n \equiv 0 \pmod{4} \)
Let $n = 4k$, $k \geq 1, k \in \mathbb{Z}$. Label $u, u_1, v_2, v_3, \ldots, v_{2k-1}$ with 1. This induces edge label 1 to $4k + 4 + (2k - 2)2 = 8k$ edges. Label the remaining vertices arbitrarily so that $2k$ vertices get label -1, $2k$ vertices get label i and $2k + 1$ vertices get label $-i$.

Case 2. $n \equiv 1(\text{mod } 4)$

Let $n = 4k + 1$, $k \geq 1, k \in \mathbb{Z}$. Label $u, u_1, v_1, v_2, v_3, \ldots, v_{2k-1}$ with 1. This induces edge label 1 to $4k + 1 + 4 + 1 + (2k - 2)2 = 8k + 2$ edges. Label the remaining vertices arbitrarily so that $2k + 1$ vertices get label -1, $2k + 1$ vertices get label i and $2k$ vertices get label $-i$.

Case 3. $n \equiv 2(\text{mod } 4)$

Let $n = 4k + 2$, $k \geq 1, k \in \mathbb{Z}$. Label $u, u_1, v_2, v_3, \ldots, v_{2k}$ with 1. This induces edge label 1 to $4k + 2 + 4 + (2k - 1)2 = 8k + 4$ edges. Label the remaining vertices arbitrarily so that $2k + 1$ vertices get label -1, $2k + 1$ vertices get label i and $2k + 2$ vertices get label $-i$.

Case 4. $n \equiv 3(\text{mod } 4)$

Let $n = 4k + 3$, $k \geq 1, k \in \mathbb{Z}$. Label $u, u_1, v_1, v_2, v_3, \ldots, v_{2k}$ with 1. This induces edge label 1 to $4k + 3 + 4 + 1 + (2k - 1)2 = 8k + 6$ edges. Label the remaining vertices arbitrarily so that $2k + 2$ vertices get label -1, $2k + 2$ vertices get label i and $2k + 1$ vertices get label $-i$.

Table 3.13 shows that the above labelings are group $\{1, -1, i, -i\}$ cordial.

Example 3.2.13. A group $\{1, -1, i, -i\}$ cordial labeling of SF_3 is given in Fig.3.7.
Example 3.2.14. A group \(\{1, -1, i, -i\} \) cordial labeling of \(SF_5 \) is given in Fig. 3.8.