Chapter 2

Group A cordial labeling

In this Chapter, for any group A we define a new labeling, called as Group A cordial labeling and give a necessary and sufficient condition for a graph G to be group (\mathbb{Z}_p, \oplus) cordial where \mathbb{Z}_p is the group of integers modulo p under addition.. We then investigate the group \{1, −1, i, −i\} cordial labeling of some graphs. This is the group of fourth roots of unity, which is cyclic with generators i and $−i$. We prove that the Bistar, Path, Cycle, Friendship graph and $W(n, n)$ are group \{1, −1, i, −i\} cordial. We also characterize Star and Complete graphs that are group \{1, −1, i, −i\} cordial.

2.1 Group A cordial labeling of a graph

Definition 2.1.1. Let G be a (p,q) graph and let A be a group. Let $f : V(G) \rightarrow A$ be a function. For each edge uv assign the label 1 if $(o(f(u)), o(f(v))) = 1$ or 0 otherwise. f is called a group A cordial labeling if $|v_f(a) - v_f(b)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$, where $v_f(x)$ and $e_f(y)$ respectively denote the number of vertices labeled with an element x and number of edges labeled with $y (y = 0, 1)$. A graph which admits a group A cordial labeling is called a group A cordial graph.

Example 2.1.2. A simple example of a group (\mathbb{Z}_5, \oplus) cordial graph G is given in Fig.2.1.
We have \(\mathbb{Z}_5 = \{0, 1, 2, 3, 4\} \).
Also \(o(0) = 1, o(1) = 5, o(2) = 5, o(3) = 5 \) and \(o(4) = 5 \).
Define \(f : V(G) \to \mathbb{Z}_5 \) by \(f(u) = 1, f(v) = 0, f(w) = 2, f(x) = 3 \) and \(f(y) = 4 \).
So for every \(n \in \mathbb{Z}_5 \) we have \(v_f(n) = 1 \). As \((1, 5) = 1 \), the edges \(uv, vw, vy \) get label 1 and the edges \(wx, xy \) get label 0.
Thus \(e_f(0) = 2 \) and \(e_f(1) = 3 \). Since we have \(|v_f(a) - v_f(b)| = 0 \) for every \(a, b \in \mathbb{Z}_5 \) and \(|e_f(0) - e_f(1)| = 1 \), \(f \) is a group \((\mathbb{Z}_5, +) \) cordial labeling and \(G \) is a group \((\mathbb{Z}_5, +) \) cordial graph.

![Figure 2.1](image.png)

We now give a necessary and sufficient condition for a graph \(G \) with \(p \) vertices where \(p \) is the power of a single prime, to have a group \((\mathbb{Z}_p, +) \) cordial labeling.

2.2 Some results on Group A cordial labeling

Theorem 2.2.1. Let \(G \) be a \((p, q)\) graph with \(p = z^\alpha \) where \(z \) is a prime. Then \(G \) is a group \((\mathbb{Z}_p, +)\) cordial graph if and only if \(G \) has a vertex \(v \) with \(\text{deg } v = d \) where \(d = \frac{q}{2}, \lceil \frac{q}{2} \rceil \) or \(\lfloor \frac{q}{2} \rfloor \).

Proof. Let \(V(G) = \{v, v_1, v_2, ..., v_{p-1}\} \). Assume that \(G \) has a group \((\mathbb{Z}_p, +)\) cordial labeling \(g \). Choose \(v \) as the vertex with \(g(v) = 0 \). Let \(\text{deg } v = d \). As \(g \) is a group \((\mathbb{Z}_p, +)\) cordial labeling, \(|e_g(0) - e_g(1)| \leq 1 \).
As $p = z^\alpha$, by Theorem 1.3.3, order of the labels of all other vertices is z^j for some $j \leq \alpha$. So the d edges incident at v alone have label 1 and all other edges have label 0.

Thus $|e_g(0) - e_g(1)| \leq 1$

$\Rightarrow |(q - d) - d| \leq 1$

$\Rightarrow |q - 2d| \leq 1$

$\Rightarrow q = 2d, 2d + 1$ or $2d - 1$

$\Rightarrow d = \frac{q}{2}, \left\lceil \frac{q}{2} \right\rceil$ or $\left\lfloor \frac{q}{2} \right\rfloor$.

Conversely, assume that G has a vertex v with $\text{deg } v = d$ where $d = \frac{q}{2}, \left\lceil \frac{q}{2} \right\rceil$ or $\left\lfloor \frac{q}{2} \right\rfloor$. Define $f : V(G) \rightarrow \mathbb{Z}_p$, by $f(v) = 0$ and $f(v_i) = i$ for $1 \leq i \leq p - 1$. The d edges incident with v have label 1 and all other edges have label 0. As $d = \frac{q}{2}, \left\lceil \frac{q}{2} \right\rceil$ or $\left\lfloor \frac{q}{2} \right\rfloor$, $|e_f(0) - e_f(1)| \leq 1$ and so f is a group (\mathbb{Z}_p, \oplus) cordial labeling.

Corollary 2.2.2. If p is a power of a single prime, then P_p is group (\mathbb{Z}_p, \oplus) cordial if and only if $p \leq 5$.

Proof. For $p \leq 5$, a group (\mathbb{Z}_p, \oplus) cordial labeling of P_p is given in Fig.2.2.

For $p \geq 5$, the proof follows from Theorem 2.2.1.

Corollary 2.2.3. If n is a prime, then the Star $K_{1,n^\alpha-1}$ is group \mathbb{Z}_{n^α} cordial if and only if $n^\alpha \leq 3$.

Proof. The proof follows from Theorem 2.2.1.
Corollary 2.2.4. If n is a prime, then the Bistar $B_{\frac{n^\alpha-3}{2}, \frac{n^\alpha-1}{2}}$ is group \mathbb{Z}_{n^α} cordial.

Proof. The order and size of the Bistar $B_{\frac{n^\alpha-3}{2}, \frac{n^\alpha-1}{2}}$ are n^α and $n^\alpha - 1$ respectively. Note that the degree of one of the central vertices is $\frac{n^\alpha-1}{2}$. Hence the proof follows from Theorem 2.2.1. \qed

2.3 Group \{1, -1, i, -i\} cordial labeling of some graphs

We now investigate the group \{1, -1, i, -i\} cordial labeling of some graphs. This is the group of fourth roots of unity, which is cyclic with generators i and $-i$. We prove that the Bistar, Path, Cycle, Friendship graph and $W(n,n)$ are group \{1, -1, i, -i\} cordial. We also characterize Star and Complete graphs that are group \{1, -1, i, -i\} cordial.

Definition 2.3.1. Let G be a (p, q) graph and consider the group \{1, -1, i, -i\} with multiplication. Let $f : V(G) \to \{1, -1, i, -i\}$ be a function. For each edge uv assign the label 1 if $(o(f(u)), o(f(v))) = 1$ or 0 otherwise. f is called a group \{1, -1, i, -i\} cordial labeling if $|v_f(a) - v_f(b)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$, where $v_f(x)$ and $e_f(y)$ respectively denote the number of vertices labeled with an element x and number of edges labeled with y ($y = 0, 1$). A graph which admits a group \{1, -1, i, -i\} cordial labeling is called a group \{1, -1, i, -i\} cordial graph.

Example 2.3.2. A group \{1, -1, i, -i\} cordial labeling of C_3 is given in Fig. 2.3.

![Fig. 2.3](image-url)
Remark 2.3.3. Let \(A \) be any group of order 4. As identity is the only element of order 1, by Theorem 1.3.3, every other element of \(A \) is of order 2 or 4. Thus a graph \(G \) is group \(\{1, -1, i, -i\} \) cordial if and only if \(G \) is group \(A \) cordial for any group of order 4.

Theorem 2.3.4. Every graph is a subgraph of a connected group \(\{1, -1, i, -i\} \) cordial graph.

Proof. Let \(G \) be a \((p, q)\) graph and \(G_i(1 \leq i \leq 4) \) be four copies of the complete graph \(K_p \). Let \(u_1^i, u_2^i, \ldots, u_p^i \) be the vertices of \(G_i(1 \leq i \leq 4) \).

Let \(m = 2\binom{p}{2} \). Let \(G^* \) be obtained from \(G_i(1 \leq i \leq 4) \) as follows:

The vertex set of \(G^* \) is \(V(G_1) \cup V(G_2) \cup V(G_3) \cup V(G_4) \cup \{v_i : 1 \leq i \leq m\} \) and the edge set is given by \(E(G^*) = E(G_1) \cup E(G_2) \cup E(G_3) \cup E(G_4) \cup \{u_1^1u_1^2, u_2^2u_3^3, u_3^3u_1^1\} \cup \{u_1^iv_j : 1 \leq j \leq m\} \). Clearly \(G^* \) has \(4p + m \) vertices and \(4\binom{p}{2} + m + 3 \) edges. As \(G^* \) contains 4 copies of \(K_p \), \(G \) is clearly a subgraph of \(G^* \).

Let \(f : V(G^*) \rightarrow \{1, -1, i, -i\} \) be any function. Assign label 1 to all the vertices of \(G_1 \), \(i \) to all the vertices of \(G_2 \), \(-i \) to all the vertices of \(G_3 \) and \(-i\) to all the vertices of \(G_4 \).

Case 1. \(m = 4t, t \in \mathbb{Z} \).

Assign label 1 to the vertices \(v_1, v_2, \ldots, v_t \), \(i \) to the vertices \(v_{t+1}, \ldots, v_{2t} \), \(-i\) to the vertices \(v_{2t+1}, \ldots, v_{3t} \) and finally assign the label \(-i\) to the vertices \(v_{3t+1}, v_{3t+2}, \ldots, v_{4t} \). In this case \(v_f(1) = v_f(-1) = v_f(i) = v_f(-i) = p + t \).

Case 2. \(m = 4t + 1, t \in \mathbb{Z} \).

As in Case 1, assign labels to the vertices \(v_i(1 \leq i \leq m - 1) \) and assign 1 to the vertex \(v_m \). Now \(v_f(1) = p + t + 1 \) and \(v_f(-1) = v_f(i) = v_f(-i) = p + t \).
Case 3. \(m = 4t + 2, t \in \mathbb{Z} \).

Assign labels to the vertices \(v_i (1 \leq i \leq m - 1) \) as in Case 2. Finally assign the label \(-1\) to the vertex \(v_m \). Here \(v_f(1) = v_f(-1) = p + t + 1 \) and \(v_f(i) = v_f(-i) = p + t \).

Case 4. \(m = 4t + 3, t \in \mathbb{Z} \).

As in Case 3 , assign labels to the vertices \(v_i (1 \leq i \leq m - 1) \) and assign \(i \) to the vertex \(v_m \). In this case \(v_f(1) = v_f(-1) = v_f(i) = p + t + 1 \) and \(v_f(-i) = p + t \).

In all cases, \(e_f(0) = 3\binom{p}{2} + 2 \) and \(e_f(1) = 3\binom{p}{2} + 1 \). So \(f \) is a group \(\{1, -1, i, -i\} \) cordial labeling of \(G^* \).

\[\square \]

Theorem 2.3.5. The Star \(K_{1,n} \) is group \(\{1, -1, i, -i\} \) cordial if and only if \(n \leq 5 \).

Proof. Let \(V(K_{1,n}) = \{u, u_i : 1 \leq i \leq n\} \) and \(E(K_{1,n}) = \{uu_i : 1 \leq i \leq n\} \). Suppose \(n \leq 5 \). Group \(\{1, -1, i, -i\} \) cordial labelings of \(K_{1,n} \) are given in Table 2.1.

Conversely, suppose that \(K_{1,n} \) is group \(\{1, -1, i, -i\} \) cordial. Let \(f \) be a group \(\{1, -1, i, -i\} \) cordial labeling of \(K_{1,n} \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(u)</th>
<th>(u_1)</th>
<th>(u_2)</th>
<th>(u_3)</th>
<th>(u_4)</th>
<th>(u_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-i</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-i</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Table 2.1

Case 1. \(f(u) = 1 \)

In this case all the edges receive the label 1. Thus \(e_f(1) = n \) and
$e_f(0) = 0$, a contradiction.

Case 2. $f(u) \in \{-1, i, -i\}$

Clearly $v_f(1) = \lceil \frac{p}{4} \rceil$ or $\lceil \frac{p+1}{4} \rceil$. This implies $e_f(1) \leq \lceil \frac{p+1}{4} \rceil$. This contradicts the edge condition of group $\{1, -1, i, -i\}$ cordial labeling. \hfill \Box

Theorem 2.3.6. The Bistar $B_{n,n}$ is group $\{1, -1, i, -i\}$ cordial for every n.

Proof. Let $V(B_{n,n}) = \{u, v\} \cup \{u_i v_i : 1 \leq i \leq n\}$ and $E(B_{n,n}) = \{uv\} \cup \{uu_i, vv_i : 1 \leq i \leq n\}$. Let $f : V(B_{n,n}) \rightarrow \{1, -1, i, -i\}$ be a function. Assign the label 1, -1 to the vertices u and v respectively.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4t$. Assign the label 1 to the vertices $u_1, u_2, ..., u_{2t}$ and -1 to the vertices $u_{2t+1}, u_{2t+2}, ..., u_{4t}$. Assign the label i to the vertices $v_1, v_2, ..., v_{2t}$ and assign the label $-i$ to the vertices $v_{2t+1}, v_{2t+2}, ..., v_{4t}$.

Case 2. $n \equiv 1 \pmod{4}$.

Let $n = 4t + 1$. As in Case 1, assign labels to the vertices $u_i, v_i (1 \leq i \leq n - 1)$. Finally assign the label $i, -i$ respectively to the vertices u_n, v_n.

Case 3. $n \equiv 2 \pmod{4}$.

Let $n = 4t + 2$. Assign labels to the vertices $u_i, v_i (1 \leq i \leq n - 1)$ as in Case 2. Then assign the label $1, -1$ to the vertices u_n, v_n respectively.

Case 4. $n \equiv 3 \pmod{4}$.
Let \(n = 4t + 3 \). As in Case 3, assign labels to the vertices \(u_i, v_i (1 \leq i \leq n - 1) \). Finally assign the label \(i, -i \) to the vertices \(u_n, v_n \) respectively. That this vertex labeling \(f \) is a group \(\{1, -1, i, -i\} \) cordial labeling follows from Table 2.2.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(v_f(1))</th>
<th>(v_f(-1))</th>
<th>(v_f(i))</th>
<th>(v_f(-i))</th>
<th>(e_f(0))</th>
<th>(e_f(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4t</td>
<td>2t + 1</td>
<td>2t + 1</td>
<td>2t</td>
<td>2t</td>
<td>4t</td>
<td>4t + 1</td>
</tr>
<tr>
<td>4t + 1</td>
<td>2t + 1</td>
<td>2t + 1</td>
<td>2t + 1</td>
<td>2t + 1</td>
<td>4t + 1</td>
<td>4t + 2</td>
</tr>
<tr>
<td>4t + 2</td>
<td>2t + 2</td>
<td>2t + 2</td>
<td>2t + 1</td>
<td>2t + 1</td>
<td>4t + 2</td>
<td>4t + 3</td>
</tr>
<tr>
<td>4t + 3</td>
<td>2t + 2</td>
<td>2t + 2</td>
<td>2t + 2</td>
<td>2t + 2</td>
<td>4t + 3</td>
<td>4t + 4</td>
</tr>
</tbody>
</table>

Table 2.2

Example 2.3.7. Group \(\{1, -1, i, -i\} \) cordial labelings of \(B(4, 4) \) and \(B(6, 6) \) are given in Fig. 2.4.

\[\begin{array}{ccccccc}
 n = 4 & 1 & i & 1 & i & 1 & -1
\end{array}\]

\[\begin{array}{ccccccc}
 n = 6 & 1 & i & 1 & i & 1 & -1
\end{array}\]

Theorem 2.3.8. Any Path \(P_n \) is group \(\{1, -1, i, -i\} \) cordial.
Proof. Let \(P_n \) be the path \(u_1, u_2, u_3, ..., u_n \). Clearly \(P_n \) is group \(\{1, -1, i, -i\} \) cordial if \(n \leq 3 \). Assume \(n \geq 4 \).

Let \(f : V(P_n) \rightarrow \{1, -1, i, -i\} \) be a function.

Case 1. \(n \equiv 0(\text{mod } 4) \)

Let \(n = 4t \). Assign the label \(i \) to the vertices \(u_i \) (\(1 \leq i \leq t \)). Then assign the label \(-i \) to the vertices \(u_{t+i} \) (\(1 \leq i \leq t \)). Next assign the label \(-1 \) to the vertices \(u_{2t+1}, u_{2t+3}, ..., u_{4t-1} \). Finally assign the label 1 to the vertices \(u_{2t+2}, u_{2t+4}, ..., u_{4t} \).

Case 2. \(n \equiv 1(\text{mod } 4) \)

Let \(n = 4t + 1 \). Assign labels to the vertices \(u_i \) (\(1 \leq i \leq n-1 \)) as in Case 1. Finally assign the label 1 to the vertex \(u_n \).

Case 3. \(n \equiv 2(\text{mod } 4) \)

Let \(n = 4t + 2 \). Assign the label 1 to the vertices \(u_1, u_3, u_5, ..., u_{2t+1} \) and assign the label \(-1 \) to the vertices \(u_2, u_4, ..., u_{2t-2}, u_{2t+2} \). Then assign the label \(-i \) to the vertices \(u_{2t+3}, u_{2t+5}, ..., u_{4t+1} \). Finally assign the label \(i \) to the vertices \(u_{3t+2}, u_{3t+4}, ..., u_{4t+1} \) and \(u_{4t+2} \).

Case 4. \(n \equiv 3(\text{mod } 4) \)

Let \(n = 4t + 3 \). As in Case 3, assign labels to the vertices \(u_i \) (\(1 \leq i \leq n-1 \)). Finally assign \(i \) to the vertex \(u_n \).

Table 2.3 and Table 2.4 establish that the above vertex labeling \(f \) is a group \(\{1, -1, i, -i\} \) cordial labeling of the path \(P_n \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(v_f(1))</th>
<th>(v_f(-1))</th>
<th>(v_f(i))</th>
<th>(v_f(-i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4t</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>4t + 1</td>
<td>(t+1)</td>
<td>(t)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>4t + 2</td>
<td>(t+1)</td>
<td>(t+1)</td>
<td>(t)</td>
<td>(t)</td>
</tr>
<tr>
<td>4t + 3</td>
<td>(t+1)</td>
<td>(t+1)</td>
<td>(t+1)</td>
<td>(t)</td>
</tr>
</tbody>
</table>

Table 2.3
\begin{array}{|c|c|c|}
\hline
n & e_f(0) & e_f(1) \\
\hline
4t & 2t & 2t - 1 \\
4t + 1 & 2t & 2t \\
4t + 2 & 2t & 2t + 1 \\
4t + 3 & 2t + 1 & 2t + 1 \\
\hline
\end{array}

Table 2.4

\textbf{Example 2.3.9.} Group \(\{1, -1, i, -i\} \) cordial labelings of \(P_8 \) and \(P_9 \) are given in Fig. 2.5.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{example2.3.9}
\caption{Fig. 2.5}
\end{figure}

\textbf{Corollary 2.3.10.} Any Cycle \(C_n \) is group \(\{1, -1, i, -i\} \) cordial.

\textbf{Proof.} Let the Cycle \(C_n \) be \(u_1, u_2, u_3, ..., u_n, u_1 \).
Let \(f : V(C_n) \rightarrow \{1, -1, i, -i\} \) be a function.

\textbf{Case 1.} \(n \equiv 0, 1, 3(\text{mod } 4) \)

The group \(\{1, -1, i, -i\} \) cordial labeling given in Theorem 2.3.8 is also a group \(\{1, -1, i, -i\} \) cordial labeling of \(C_n \).

\textbf{Case 2.} \(n \equiv 2(\text{mod } 4) \)

Assign labels to the vertices \(u_i(1 \leq i \leq n) \) as in Theorem 2.3.8.
Finally relabel the vertex u_2 with 1 and relabel u_3 with -1.

\[
\square
\]

Example 2.3.11. Group $\{1, -1, i, -i\}$ cordial labelings of C_{10} and C_{11} are given in Fig. 2.6.

![Figure 2.6](image)

Theorem 2.3.12. The Complete graph K_n is group $\{1, -1, i, -i\}$ cordial if and only if $n \in \{1, 2, 3, 4, 7, 14, 21\}$.

Proof. Let $V(K_n) = \{u_i : 1 \leq i \leq n\}$.

Tables 2.5 and 2.6 give a group $\{1, -1, i, -i\}$ cordial labeling of K_n, $n \in \{1, 2, 3, 4, 7, 14, 21\}$.

<table>
<thead>
<tr>
<th>n</th>
<th>u_1</th>
<th>u_2</th>
<th>u_3</th>
<th>u_4</th>
<th>u_5</th>
<th>u_6</th>
<th>u_7</th>
<th>u_8</th>
<th>u_9</th>
<th>u_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>i</td>
</tr>
</tbody>
</table>

Table 2.5
Table 2.6

<table>
<thead>
<tr>
<th>n</th>
<th>u_{11}</th>
<th>u_{12}</th>
<th>u_{13}</th>
<th>u_{14}</th>
<th>u_{15}</th>
<th>u_{16}</th>
<th>u_{17}</th>
<th>u_{18}</th>
<th>u_{19}</th>
<th>u_{20}</th>
<th>u_{21}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>i</td>
<td>−i</td>
<td>−i</td>
<td>−i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>−1</td>
<td>i</td>
<td>i</td>
<td>i</td>
<td>−i</td>
<td>−i</td>
<td>−i</td>
<td>−i</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume \(n > 4 \). Suppose \(f \) is a group \{1, −1, i, −i\} cordial labeling of \(K_n \).

Case 1. \(n \equiv 0 \pmod{4} \)

Let \(n = 4t, t \in \mathbb{N} \) and \(t > 1 \). Obviously \(v_f(1) = v_f(-1) = v_f(i) = v_f(-i) = t \). It is easy to verify that \(e_f(1) = \binom{t}{2} + t(3t) \). Thus \(e_f(1) = \frac{t(t-1)}{2+3t^2} \). Also \(e_f(0) = \binom{t}{2} + \binom{t}{2} + \binom{t}{2} + t(t) + t(t) = 3 \binom{t}{2} + 3t^2 = \frac{3t(t-1)}{2+3t^2} \). So \(e_f(0) - e_f(1) = t^2 - t > 1 \), a contradiction.

Case 2. \(n \equiv 1 \pmod{4} \)

Let \(n = 4t + 1, t \in \mathbb{N}, t \neq 5 \). Then \(v_f(1) = t \) or \(t + 1 \).

Subcase (i). \(v_f(1) = t \).

In this case, \(e_f(1) = \binom{t}{2} + t^2 + t^2 + t(t + 1) = \frac{t(t-1)}{2} + 3t^2 + t \).

Then \(e_f(0) = \binom{t}{2} + \binom{t}{2} + \binom{t+1}{2} + t(t) + t(t+1) + t(t+1) = 2 \binom{t}{2} + \binom{t+1}{2} + t^2 + 2t(t+1) = \frac{2t(t-1)}{2} + \frac{t(t+1)}{2} + 3t^2 + 2t \).

Hence \(e_f(0) - e_f(1) = \frac{t(t-1)}{2} + \frac{t(t+1)}{2} + t = t^2 + t > 1 \), a contradiction.

Subcase (ii). \(v_f(1) = t + 1 \).
Here $e_f(1) = \binom{t+1}{2} + 3t(t+1)$ and $e_f(0) = 3\binom{t}{2} + t^2 + t^2 + t^2 = 3\binom{t}{2} + 3t^2$. Hence $e_f(0) - e_f(1) = t^2 - 5t$, a contradiction.

Case 3. $n \equiv 2 (\text{mod } 4)$

Let $n = 4t + 2, t \in \mathbb{N}, t \neq 3$. Then $v_f(1) = t$ or $t + 1$.

Subcase (i). $v_f(1) = t$.

In this case, $e_f(1) = \binom{t}{2} + t^2 + t(t + 1) + t(t + 1)$ and $e_f(0) = \binom{t}{2} + \binom{t+1}{2} + \binom{t+1}{2} + t(t + 1) + t(t + 1) + (t + 1)(t + 1)$

$= \binom{t}{2} + 2\binom{t+1}{2} + 3t^2 + 4t + 1$. Hence $e_f(0) - e_f(1) = t^2 + 3t + 1 > 1$, a contradiction.

Subcase (ii). $v_f(1) = t + 1$.

In this case, $e_f(1) = \binom{t+1}{2} + 2t(t + 1) + (t + 1)^2$ and $e_f(0) = 2\binom{t}{2} + \binom{t+1}{2} + t^2 + 2t(t + 1)$.

Hence $e_f(0) - e_f(1) = t^2 - 3t - 1 > 1$, a contradiction.

Case 4. $n \equiv 3 (\text{mod } 4)$

Let $n = 4t + 3, t \in \mathbb{N}, t \neq 1$. Then $v_f(1) = t$ or $t + 1$.

Subcase (i). $v_f(1) = t$.

In this case, $e_f(1) = \binom{t}{2} + 3t(t + 1)$ and $e_f(0) = 3\binom{t+1}{2} + 3(t + 1)^2$.

Thus $e_f(0) - e_f(1) = t^2 + 5t + 3 > 1$, a contradiction.

Subcase (ii). $v_f(1) = t + 1$.

In this case, $e_f(1) = \binom{t+1}{2} + 2(t + 1)^2 + t(t + 1)$ and $e_f(0) = \binom{t}{2} + 2\binom{t+1}{2} + (t + 1)^2 + 2t(t + 1)$.

Hence $e_f(0) - e_f(1) = t^2 + t - 1 > 1$, a contradiction.

\[\square\]
Theorem 2.3.13. The Friendship graph $C_3^{(t)}$ is group \{1, −1, i, −i\} cordial if and only if $t \leq 4$.

Proof. Let the vertices of $C_3^{(t)}$ be labeled as follows: Let u be the vertex common to all 3-cycles and let every 3-cycle be labeled as $uu_i v_i (1 \leq i \leq t)$. The group \{1, −1, i, −i\} cordial labeling of $C_3^{(t)}, t \leq 4$ is given in Table 2.7.

<table>
<thead>
<tr>
<th>t</th>
<th>u</th>
<th>u_1</th>
<th>u_2</th>
<th>u_3</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>−1</td>
<td></td>
<td></td>
<td>i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>−1</td>
<td>1</td>
<td>i</td>
<td></td>
<td>1</td>
<td>−i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>−1</td>
<td>i</td>
<td>−i</td>
<td>1</td>
<td>1</td>
<td>−i</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>−1</td>
<td>−i</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>−i</td>
<td>−1</td>
<td>i</td>
</tr>
</tbody>
</table>

Table 2.7

Assume $t > 4$. Suppose f is a group \{1, −1, i, −i\} cordial labeling of $C_3^{(t)}$.

Case 1. $f(u) = 1$.

Then $e_f(1) \geq 2t$ and $e_f(0) \leq t$. Thus $e_f(1) − e_f(0) \geq t$, a contradiction.

Case 2. $f(u) \neq 1$.

Subcase(i). t is even.

Let $t = 2m$. Clearly two 1’s contribute at most 4 edges with label 1. Therefore m 1’s contribute at most $2m$ edges with label 1. Hence $e_f(1) \leq 2(m+1) = 2m+2$. But the size of $C_3^{(t)}$ is $6m$, a contradiction.

Subcase(ii). t is odd.

Let $t = 2m + 1$. In this case also, $e_f(1) \leq 2m + 2$, a contradiction. □

Theorem 2.3.14. $W(n, n)$ is group \{1, −1, i, −i\} cordial for every n.

22
Proof. Let $V(W_{n,n}) = \{u, v, u_i, v_i : 1 \leq i \leq n\}$ and $E(W_{n,n}) = \{uu_i, vv_i : 1 \leq i \leq n\} \cup \{u_i u_{(i+1) \mod n}, v_i v_{(i+1) \mod n} : 1 \leq i \leq n\} \cup \{uv\}$. Note that $W(n, n)$ has $2n + 2$ vertices and $4n + 1$ edges. Let $f : V(W_{n,n}) \to \{1, -1, i, -i\}$ be a function.

Case 1. n is odd.

Let $n = 2k + 1$, $k \geq 1$, $k \in \mathbb{Z}$. Label the vertices $u, u_1, u_3, \ldots, u_{n-2}$ by 1. Label the remaining vertices arbitrarily so that $k + 1$ of them get label -1, $k + 1$ of them get label i and $k + 1$ of them get label $-i$.

Case 2. n is even.

Let $n = 2k$, $k \geq 2$, $k \in \mathbb{Z}$.
Label the vertices $u, u_1, u_3, u_5, \ldots, u_{n-1}$ by 1. Label the remaining vertices arbitrarily so that $k + 1$ of them get label -1, k of them get label i and k of them get label $-i$.

Table 2.8 shows that f is a group $\{1, -1, i, -i\}$ cordial labeling.

<table>
<thead>
<tr>
<th>Parity of n</th>
<th>$v_f(1)$</th>
<th>$v_f(-1)$</th>
<th>$v_f(i)$</th>
<th>$v_f(-i)$</th>
<th>$e_f(0)$</th>
<th>$e_f(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>odd, $n = 2k + 1$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>$4k + 3$</td>
<td>$4k + 2$</td>
</tr>
<tr>
<td>even, $n = 2k$</td>
<td>$k + 1$</td>
<td>$k + 1$</td>
<td>k</td>
<td>k</td>
<td>$4k$</td>
<td>$4k + 1$</td>
</tr>
</tbody>
</table>

Table 2.8

Example 2.3.15. A group $\{1, -1, i, -i\}$ cordial labeling of $W(5, 5)$ is given in Fig. 2.7.
Fig 2.7