List of Tables:

CHAPTER 3:
3.1a: Estimated nano-structural or (and) microstructural parameters, using SEM micrographs at CdCl₂ concentration (0.3 wt% up to 5.4 wt%) in PVA-PVP blend films. 84
3.1b: Estimated Nano/Micro-structural parameters using SEM micrographs at CdCl₂ concentration (6.3 wt% up to 11.3 wt%) in PVA-PVP blend films. 87
3.2: Calculated structural parameters, from XRD spectra. 105

CHAPTER 4:
4.1: Activation energy and optical band gaps which correspond to direct and indirect allowed transitions at three various energy regions. 123
4.2: Estimated optical parameters from the first procedure. DL denotes the doping level of CdCl₂ in PVA-PVP blend films. The other terms have their usual significance (which has been described in the text). 129
4.3: List of estimated optical parameters obtained from the second procedure. 133
4.4: FT-Raman and FTIR peak assignments of pure and CdCl₂ doped PVA-PVP blend films. 140
4.5: Intensity (Iᵢ), and Area (Aᵢ) for four different (i= 1 to 4) emission (fluorescence) peaks, from multiple Gaussian fitting at a different dopant concentration of CdCl₂ in PVA-PVP blend. The excitation wavelength is 355 nm. 158

CHAPTER 5:
5.1: Activation energies for charge carrier mobility extracted from experimental study of temperature dependence of DC electrical conductivity of PVA-PVP blend films, doped with different concentrations (doping levels, DL) of CdCl₂. 176
5.2: Transference number for electrons (tₑₑ) and ions (tᵢᵢ). 178
5.3: Parameters from dielectric measurements at different set temperatures, for 0.0 wt% and 10.2 wt% (doping level) of CdCl₂ in PVA-PVP blend films. 187
5.4: Dependence of ’s’ and barrier potential (Wₗ) on the absolute temperature (T) for pure and 10.2 wt% CdCl₂ in PVA-PVP blend films. 189
5.5: Activation energy (in eV), for 0.0 wt% and 10.2 wt% (doping level) of CdCl₂ in PVA-PVP blend films, at different frequencies. 195

5.6: Dependence of 's' and barrier potential (W_h) on the absolute temperature (T=299K) at different concentration of CdCl₂ in PVA-PVP blend film. 200

CHAPTER 6:
6.1: Estimated values of glass transition temperature T_g, melting temperature T_m and decomposition temperature T_d from DSC curves. 219
6.2: Onset and Offset temperature at five different stages of decomposition, at different concentrations of CdCl₂ in PVA-PVP blend film. 229
6.3: Estimated kinetic parameters from the FWO, KAS and Kissinger models, at three thermal decomposition stages. 233

CHAPTER 7:
7.1: Wavelength and energy of electromagnetic radiations (photons). 245
7.2: Covalent bond energies in keV/atom and kJ/mol. 245
7.3. Skin depth (δ) for 4.885 eV photons in CdCl₂ doped PVA- PVP blend films, doped to different levels (DL indicates the doping level). 248
7.4: Activation energy and optical band gaps, which correspond to direct and indirect allowed transitions in two different energy regions. 253
7.5: Area, intensity and quantum yield from emission spectra, for UV exposure time intervals of 0 minute (un-irradiated sample), 30 minutes and 180 minutes. In the second column, the quantity ‘Q’ represents area (A) or intensity (I) or quantum yield (Φ) of the emission (fluorescence) peaks, respectively. 256
7.6: Peak assignments from FTIR spectra of CdCl₂ doped PVA-PVP blend films in terms of wavenumber (cm⁻¹). 259
7.7: Raman peak assignments of CdCl₂ doped PVA-PVP blend films in terms of wavenumber (cm⁻¹). 261