Chapter 4

P_k and $P'_k \Gamma$ - Seminear-rings

In this chapter, we introduce the concepts of P_k and $P'_k \Gamma$ - seminear-rings. We say that R is a $P_k \Gamma$ - seminear-ring ($P'_k \Gamma$ - seminear-ring) if for all x in R there exists a positive integer k such that $x^k \gamma R = x \gamma R \gamma x$ ($R \gamma x^k = x \gamma R \gamma x$).

This chapter is divided into three sections. In the first section, we give examples to show that each of these concepts - P_k and P'_k - are different in general.

In the second section of this chapter, we derive properties of P_k and $P'_k \Gamma$ - seminear-rings. We prove that any homomorphic image of a $P_k (P'_k) \Gamma$ - seminear-ring is a $P_k (P'_k) \Gamma$ - seminear-ring.

We also prove that a left identity (right identity) of a $P_k (P'_k) \Gamma$ - seminear-ring is also a right identity (left identity). We show by an example that a right identity of a $P_k \Gamma$ - seminear-ring need not be a left identity. We establish that a $P_k (P'_k) \Gamma$ - seminear-ring R has a mate function if and only if R is a right-k-normal (left-k-normal) Γ.

61
- seminear-ring. We prove a theorem using mate functions. Let R be a P_k or a $P'_k \Gamma$ - seminear-ring. If R admits mate functions then R has no non-zero nilpotent elements i.e. $L = \{0\}$. We prove that every $P_k (P'_k) \Gamma$ - seminear-ring is isomorphic to a sub-direct product of sub-directly irreducible $P_k(P'_k) \Gamma$ - seminear-rings.

If $x \in R \gamma x$ ($x \in x \gamma R$) for all $x \in R$ then R is called a left normal (right normal) Γ - seminear-ring. Motivated by this we introduce the concepts of left-r-normal and right-r-normal Γ - seminear-rings, where r is a positive integer. R is called a left-r-normal (right-r-normal) Γ - seminear-ring if $x \in R \gamma x^r$ ($x \in x^r \gamma R$). We have shown that every left-r-normal (right-r-normal)Γ - seminear-ring is a left normal (right normal)Γ - seminear-ring.

We discuss the properties of P_k and $P'_k \Gamma$ - seminear-rings when they admit mate functions. We obtain a necessary and sufficient condition for a $P_k (P'_k) \Gamma$ - seminear-ring to admit mate functions vis-a-vis the notion of left-r-normal (right-r-normal). It is shown that every ideal of a left-k-normal $P'_k \Gamma$ - seminear-ring (right-k-normal $P_k \Gamma$ - seminear-ring) is also a left-k-normal $P'_k \Gamma$ - seminear-ring (right-k-normal $P_k \Gamma$ - seminear-ring) in its own right.

In the third section of this chapter, we focus on the properties of P_1 and $P'_1 \Gamma$ - seminear-rings. We prove that every left ideal (right ideal) of R is a right ideal (left ideal) if and only if R is a $P_1(P'_1) \Gamma$ - seminear-ring. We also prove that when R is a left normal $P'_1 \Gamma$ -
seminear-ring.

(i) \(M \cap N = M \Gamma N \) where \(M \) and \(N \) are ideals of \(R \)

(ii) Any prime ideal is a completely prime ideal.

(iii) \(R \) has \((\ast, IFP)\)

4.1 Definition and Examples

In this section, we define \(P_k \) and \(P'_k \Gamma \) - seminear-rings and furnish examples of these concepts.

Definition 4.1.1. A \(\Gamma \) - seminear-ring \(R \) is called a \(P_k \Gamma \) - seminear-ring (\(P'_k \Gamma \) - seminear-ring) if there exists a positive integer \('k' \) such that \(x^k \gamma R = x \gamma R \gamma x \) \((R \gamma x^k = x \gamma R \gamma x)\) for all \(x \) in \(R \) and \(\gamma \in \Gamma \).

Example 4.1.2. (i) Let \(R = \{0, a, b, c, d\} \). We define the semigroup operations “+” and “\(\gamma \)” in \(R \) as follows.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Then \((R, +, \gamma)\) is a \(P_k \) as well as a \(P'_k \Gamma \) - seminear-ring for all positive integers \(k \).
(ii) We consider the Γ seminear-ring where $R = \{0, a, b, c, d\}$ and the semigroup operations “+” and “γ” are defined as follows.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

Then $(R, +, \gamma)$ is a $P_k \Gamma$-seminear-ring for all positive integers k but not a $P'_k \Gamma$-seminear-ring for any positive integer k.

(iii) The direct product of any two seminear-fields is a P_k as well as a $P'_k \Gamma$-seminear-ring.

Definition 4.1.3. Let ‘r’ be a positive integer. We say that R is a left-r-normal (right-r-normal) Γ-seminear-ring if $a \in R\gamma a^r (a \in a^r \gamma R)$ for all a in R and $\gamma \in \Gamma$.

Example 4.1.4. (i) The Γ seminear-ring of example 4.1.2(i) is a left-r-normal as well as a right-r-normal Γ seminear-ring.

(ii) Trivially any Boolean Γ seminear-ring is a left-r-normal as well as a right-r-normal Γ seminear-ring.
4.2 Properties of P_k and $P'_k \Gamma$ - Seminear-rings

In this section, we study some of the important properties of P_k and $P'_k \Gamma$ - seminear-rings and give complete characterizations of such seminear-rings.

Theorem 4.2.1. Any homomorphic image of a $P_k (P'_k) \Gamma$ - seminear-ring is a $P_k (P'_k) \Gamma$ - seminear-ring.

Proof. Let R be a $P_k \Gamma$ - seminear-ring and let $f : R \rightarrow R'$ be a seminear-ring epimorphism. As R is a $P_k \Gamma$ - seminear-ring $x^k \gamma R = x\gamma R \gamma x$, for all x in R. Now for every $r' \in R'$ and for every x in R and $\gamma \in \Gamma$, we have $(f(x))^k \gamma r' = f(x^k) \gamma f(r)$ (for some r in R) $= f(x^k \gamma r) = f(x \gamma y \gamma x)$ (for some y in R) $= f(x) \gamma f(y) \gamma f(x)$. This guarantees, $f(x)^k \gamma R' \subseteq f(x) \gamma R' \gamma f(x)$. Similarly we get $f(x) \gamma R' \gamma f(x) \subseteq f(x)^k \gamma R'$. Hence $f(x^k) \gamma R' = f(x) \gamma R' \gamma f(x)$. i.e. R' is a $P_k \Gamma$ - seminear-ring.

The proof is similer when R is a P'_k seminear-ring also. \square

Theorem 4.2.2. Every $P_k (P'_k) \Gamma$ - seminear-ring R is isomorphic to a subdirect product of subdirectly irreducible $P_k (P'_k) \Gamma$ - seminear-rings.

Proof. By Theorem 1.4.16, R is isomorphic to a subdirect product of subdirectly irreducible $P_k (P'_k) \Gamma$ - seminear-rings. \square
Proposition 4.2.3. Every left-r-normal (right-r-normal) Γ-seminear-ring is a left (right) normal Γ-seminear-ring.

Proof. Let R be a left-r-normal Γ-seminear-ring with $r \geq 2$. Clearly then for all $a \in R$ and $\gamma \in \Gamma$. Now $a \in R\gamma a^r = (R\gamma a^{r-1})\gamma a \subseteq R\gamma a$. i.e. $a \in R\gamma a$. Therefore R is a left normal Γ-seminear-ring. \square

Proposition 4.2.4. A left identity (right identity) of a $P_k(P'_k)$ Γ-seminear-ring is also a right identity(left identity).

Proof. Case (i) Let R be a $P_k \Gamma$-seminear-ring. Let e' be a left identity of R. Then $x = e'x$ for all $x \in R$ and $\gamma \in \Gamma$. Now $e'\gamma R = e\gamma R \Rightarrow x = e'x = e'\gamma y = (e\gamma y)\gamma e = y\gamma e$. Hence $x\gamma e = (y\gamma e)\gamma e = y\gamma e^2 = y\gamma e = x$. i.e. $x = e\gamma x = x\gamma e$. Therefore e' is a right identity as well.

Case (ii) Let R be a $P'_k \Gamma$-seminear-ring and e be a right identity of R. Then $x = x\gamma e$ for all $x \in R$ and $\gamma \in \Gamma$. Now $R\gamma e^k = e'dR\gamma e \Rightarrow R\gamma e = e\gamma R\gamma e$. Then there exists $y' \in R$ such that, $x = x\gamma e = e\gamma y' = e\gamma (y'\gamma e) = e\gamma y'$. Hence $x\gamma e = e\gamma (e\gamma y') = e^2\gamma y' = e\gamma y' = x$. i.e. $x = x\gamma e = e\gamma x$. It follows that e' is also a left identity. \square

Remark 4.2.5. A right identity of a $P_k \Gamma$-seminear-ring need not be a left identity. The following example substantiates this. We consider the seminear-ring $R = \{0, a, b, c, d\}$ where the semigroup operations “$+$” and “γ” in R are defined as follows.

66
Here a, b, c, d are right identities but none is a left identity.

We furnish below a characterization of P_k (P'_k) Γ-seminear-rings.

Theorem 4.2.6. (i) A P_k Γ-seminear-ring R has a mate function if and only if R is a right-k-normal Γ-seminear-ring.

(ii) A P'_k Γ-seminear-ring R has a mate function if and only if R is a left-k-normal Γ-seminear-ring.

Proof. (i) Let R be a P_k Γ-seminear-ring. Then $x^{k\gamma}R = x\gamma R\gamma x$ for all x in R and $\gamma \in \Gamma$. If R has a mate function f then $x = x\gamma f(x)\gamma x \in x\gamma R\gamma x (= x^{k\gamma}R)$ and this implies $x \in x^{k\gamma}R$. i.e. R is a right-k-normal Γ-seminear-ring.

Conversely let R be a right-k-normal P_k Γ-seminear-ring. Therefore $x \in x^{k\gamma}R(= x\gamma R\gamma x)$ for all x in R and $\gamma \in \Gamma$. Then there exists some y in R such that $x = x\gamma y\gamma x$. Clearly then $x = x\gamma f(x)\gamma x$ where we set $f(x) = y$. It follows that f is a mate function for R.

(ii) Let R be a P'_k Γ-seminear-ring. Then $R\gamma x^k = x\gamma R\gamma x$ for all x in R and $\gamma \in \Gamma$. If R has a mate function f then $x = x\gamma f(x)\gamma x$
\(x \gamma R \gamma x \) and this implies \(x \in R \gamma x \). i.e. \(R \) is a left-\(k \)-normal \(\Gamma \) - seminear-ring.

Conversely let \(R \) be a left-\(k \)-normal \(P'_k \) \(\Gamma \) - seminear-ring. Therefore \(x \in R \gamma x^k (= x \gamma R \gamma x) \) for all \(x \) in \(R \) and \(\gamma \in \Gamma \). Then there exists some \(y \) in \(R \) such that \(x = x \gamma y \gamma x \). Clearly then \(x = x \gamma f (x) \gamma x \) where we set \(f (x) = y \). It follows that \(f \) is a mate function for \(R \). \(\square \)

Theorem 4.2.7. Let \(R \) be a \(P_k \) or a \(P'_k \) \(\Gamma \) - seminear-ring. If \(R \) admits mate functions then \(R \) has no non-zero nilpotent elements i.e. \(L = \{ 0 \} \).

Proof. Let \(R \) admit a mate function \(f \). We shall show that

\[x^2 = 0 \Rightarrow x = 0 \] for some \(x \) in \(R \)..................(1)

Case(i): Let \(R \) be a \(P_1 \) \(\Gamma \) - seminear-ring, i.e. \(x \gamma R = x \gamma R \gamma x \) for all \(x \) in \(R \). We have \(x = x \gamma f (x) \gamma x \in x \gamma R \gamma x \). But \(x \gamma R \gamma x = (x \gamma R) \gamma x = (x \gamma R \gamma x) \gamma x = x \gamma R \gamma x^2 = (x \gamma R) x^2 \). Then there exists \(y \in R \) such that \(x = x \gamma y \gamma x^2 \). Consequently (1) holds.

Case(ii): Let \(R \) be a \(P_k \) \(\Gamma \) - seminear-ring with \(k > 1 \). Now \(x^k \gamma R = x \gamma R \gamma x \) for all \(x \) in \(R \) and \(\gamma \in \Gamma \). Since \(x = x \gamma f (x) \gamma x \in x \gamma R \gamma x = x^k \gamma R \), \(x = x^k \gamma y \) for some \(y \) in \(R \). If \(k = 2 \), then \(x = x^2 \gamma y \). If \(k > 2 \), we write \(x = x^2 \gamma (x^{k-2} \gamma y) \) and therefore (1) is true.

Case(iii): Let \(R \) be a \(P'_1 \) \(\Gamma \) - seminear-ring, i.e. \(R \gamma x = x \gamma R \gamma x \)

68
for all \(x \) in \(R \) and \(\gamma \in \Gamma \). Therefore \(x = x\gamma f(x)\gamma x \in x\gamma R\gamma x = x\gamma (R\gamma x) = x\gamma (x\gamma R\gamma x) = x^2\gamma R\gamma x \Rightarrow x = x^2\gamma (R\gamma x) \). Then there exists \(y \in R \) such that \(x = x^2\gamma y\gamma x \). Thus (1) holds good.

Case(iv): Let \(R \) be a \(P_k' \) \(\Gamma \) - seminear-ring with \(k > 1 \). Now \(R\gamma x^k = x\gamma R\gamma x \) for all \(x \) in \(R \) and \(\gamma \in \Gamma \). Since \(x = x\gamma f(x)\gamma x \in x\gamma R\gamma x = R\gamma x^k \), we get \(x = y'\gamma x^k \) for some \(y' \) in \(R \). If \(k = 2 \), then \(x = y'\gamma x^2 \). If \(k > 2 \), we write \(x = (y'\gamma x^{k-2})\gamma x^2 \) and again (1) holds.

Now 1.3.9 guarantees that, in all the four cases, \(L = \{0\} \). \(\square \)

Theorem 4.2.8. Let \(R \) be a \(P(1,2) \) \(\Gamma \) - seminear-ring with a mate function \(f \). Then \(R \) is a

(a) \(P_k \) \(\Gamma \) - seminear-ring for all positive integers \(k \).

(b) \(P_k' \) \(\Gamma \) - seminear-ring for all positive integers \(k \).

Proof. Since \(R \) is a \(P(1,2) \) \(\Gamma \) - seminear-ring. Proposition 3.2.4 demands that every idempotent is central. i.e \(E \subseteq C(R) \).

(a) **Case (i):** Let \(k = 1 \). For all \(x \) in \(R \), \(x\gamma R = x\gamma (f(x)\gamma x\gamma R) = x\gamma (R\gamma f(x)\gamma x) \) (since \(E \subseteq C(R) \)) = \(x\gamma R\gamma x \) (By 1.4.31(ii)) i.e. \(x\gamma R = x\gamma R\gamma x \). Hence \(R \) is a \(P_1 \) \(\Gamma \) - seminear-ring.

Case (ii): For \(k > 1 \) and for any \(x \in R \) and \(\gamma \in \Gamma \), \(x^k\gamma R = x\gamma (x^{k-1}\gamma R) \subseteq x\gamma R = x\gamma R\gamma x \) (using the result for \(k = 1 \)).
Therefore $x^k \gamma R \subseteq x \gamma R \gamma x$. Also $x \gamma R \gamma x = x \gamma R \gamma x \gamma f(x) \gamma x = x \gamma (R \gamma x \gamma f(x) \gamma x) = x \gamma (x \gamma f(x) \gamma R) \gamma x$ (since $E \subseteq C(R)$) $= x \gamma (x \gamma R) \gamma x$ (By 1.4.31(ii)) $= x^2 \gamma R = x \gamma (x \gamma R \gamma x) = x \gamma (x^2 \gamma R \gamma x) = x^3 \gamma R \gamma x$. Repeating this process, we obtain $x \gamma R \gamma x = x^k \gamma R \gamma x \subseteq x^k \gamma R$ for all positive integers k. Therefore $x \gamma R \gamma x \subseteq x^k \gamma R$. Thus $x \gamma R \gamma x = x^k \gamma R$ for all x in R and $\gamma \in \Gamma$. Hence R is $P_k \Gamma$-seminear-ring for any positive integer k.

(b) Case (i): Let $k = 1$. For all x in R and $\gamma \in \Gamma$, $R \gamma x = R \gamma x \gamma f(x) \gamma x = (R \gamma x \gamma f(x)) \gamma x = (x \gamma f(x) \gamma R) \gamma x$ (since $E \subseteq C(R)$) $= x \gamma R \gamma x$ (By 1.4.31(ii)). i.e. $R \gamma x = x \gamma R \gamma x$. Hence R is a $P'_1 \Gamma$-seminear-ring.

Case (ii): Let $k > 1$. Since $E \subseteq C(R)$ we have for all y, x in R and $\gamma \in \Gamma$, $y \gamma x^k = (y \gamma x) \gamma x^{k-1} = (y \gamma x \gamma f(x) \gamma x) \gamma x^{k-1}$ $= (x \gamma f(x) \gamma y \gamma x) \gamma x^{k-1} = (x \gamma f(x) \gamma y \gamma x) \gamma x \gamma x^{k-1} \gamma x \in x \gamma R \gamma x$.

Therefore $R \gamma x^k \subseteq x \gamma R \gamma x$. Also $x \gamma y \gamma x = (x \gamma f(x) \gamma x) \gamma y \gamma x = x \gamma y \gamma f(x) \gamma x^2 = (x \gamma f(x) \gamma x) \gamma y \gamma f(x) \gamma x^2 = x \gamma y \gamma (f(x))^2 \gamma x^3$.

Repeating this process, we obtain $x \gamma y \gamma x = x \gamma y \gamma (f(x))^{k-1} \gamma x^k \in R \gamma x^k$ for all positive integers k. Therefore $x \gamma R \gamma x \subseteq R \gamma x^k$.

Thus $x \gamma R \gamma x = R \gamma x^k$ for all x in R and $\gamma \in \Gamma$.

Hence R is $P'_k \Gamma$-seminear-ring for any positive integer k. □

Remark 4.2.9. We observe that P_k and $P'_k \Gamma$-seminear-rings need not be a $P(1,2) \Gamma$-seminear-ring. For example, we consider the
seminear-ring $R = \{0, a, b, c, d\}$ where the semigroup operations “+” and “γ” in R are defined as follows.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Here $(R, +, γ)$ is a P_k as well as a $P_k' \Gamma$ - seminear-ring for all positive integers k. Even though the identity function serves as a mate function for R, it is not a $P(1, 2) \Gamma$ - seminear-ring.

Proposition 4.2.10. Let R admit a P_3 mate function f. Then

(a) Every right ideal of a $P_k \Gamma$ - seminear-ring R is a completely semi prime ideal.

(b) Every left ideal of a $(P_k') \Gamma$ - seminear-ring R is a completely semi prime ideal.

Proof. (a) **Case (i):** If $k = 1$. Let I be a right ideal of R and let $a^2 \in I$. Then $a = a\gamma f(a)\gamma a = a\gamma(f(a)\gamma a) = a\gamma(a\gamma f(a))$ (since f is a P_3 mate function) = $a^2\gamma f(a) \in I \Gamma R \subseteq I$. i.e. $a \in I$ and the result follows.

Case (ii): Let $k > 1$. For $a \in R$ and $\gamma \in \Gamma$, $a = a\gamma f(a)\gamma a \in a\gamma R\gamma a = (a^k\gamma R)$ and therefore there exists $y \in R$ such that
a = a^k \gamma y. When k = 2, a^2 \in I \Rightarrow a = a^2 \gamma y \in I \Gamma R \subseteq I. i.e. a^2 \in I \Rightarrow a \in I. When k > 2, a^2 \in I \Rightarrow a = a^2 \gamma (a^{k-2} \gamma y) \in I \Gamma R \subseteq I. i.e. a \in I and the desired result follows.

(b) Case (i): If k = 1. Let I be a right ideal of R and let a^2 \in I. Then a = a\gamma f(a)\gamma a = (a\gamma f(a))\gamma a = (a\gamma a)\gamma f(a) (since f is a P_3 mate function) = f(a)\gamma a^2 \in R\Gamma I \subseteq I. i.e. a \in I and the result follows.

Case (ii): Let k > 1. For a \in R and \gamma \in \Gamma, a = a\gamma f(a)\gamma a \in a\gamma R\gamma a = R\gamma (a^k) and therefore there exists y \in R such that a = y\gamma a^k. When k = 2, a^2 \in I \Rightarrow a = y\gamma a^2 \in R\Gamma I \subseteq I. i.e. a^2 \in I \Rightarrow a \in I. When k > 2, a^2 \in I \Rightarrow a = (y\gamma a^{k-2} \gamma a^2) \in R\Gamma I \subseteq I. i.e. a \in I and the desired result follows.

\[\square\]

Theorem 4.2.11. (a) Any ideal of a left-\(k\)-normal \(P_k'\) \(\Gamma\) - seminear-ring \(R\) is also a left-\(k\)-normal \(P_k'\) \(\Gamma\) - seminear-ring in its own right.

(b) Any ideal of a right-\(k\)-normal \(P_k\) \(\Gamma\) - seminear-ring \(R\) is also a right-\(k\)-normal \(P_k\) \(\Gamma\) - seminear-ring in its own right.

Proof. (a) Since \(R\) is a left-\(k\)-normal \(P_k'\) \(\Gamma\) - seminear-ring Theorem 4.2.6 (ii) guarantees the existence of a mate function \(f\) for \(R\). Let \(M\) be an ideal of \(R\). Therefore \(f(x)\gamma x\gamma f(x) \in R\Gamma M\Gamma R \subseteq M\) for all \(x\) in \(M\). Thus we can define a map \(g : M \rightarrow M\) such that \(g(x) = f(x)\gamma x\gamma f(x)\) for all \(x \in M\) and \(\gamma \in \Gamma\). Obviously then \(x\gamma g(x)\gamma x = x\) and therefore \(g\) is a mate function for \(M\). Now let \(x, a \in M\) and \(\gamma \in \Gamma\). Since \(R\gamma x^k = x\gamma R\gamma x\) there exists \(b \in R\) such
that \(a\gamma x^k = x\gamma b\gamma x = x\gamma (b\gamma x\gamma g(x))\gamma x \in x\gamma (R\Gamma M)\gamma x \subseteq x\gamma M\gamma x \).

Therefore \(M\gamma x^k \subseteq x\gamma M\gamma x \)..........................(1)

Also, since \(x\gamma a\gamma x \in x\gamma R\gamma x = R\gamma x^k \), there exists \(y \in R \) such that \(x\gamma a\gamma x = y\gamma x^k \). Again \(x\gamma a\gamma x = x\gamma g(x)\gamma (x\gamma a\gamma x) = x\gamma g(x)\gamma y\gamma x^k = y'\gamma x^k \) where \(y' = x\gamma g(x)\gamma y \in M\Gamma R \subseteq M \).

Therefore \(x\gamma M\gamma x \subseteq M\gamma x^k \).................................(2)

From (1) and (2) we get \(M\gamma x^k = x\gamma M\gamma x \) for all \(x \in M \) and \(\gamma \in \Gamma \).

i.e. \(M \) is a \(P'_k \Gamma \) - seminear-ring. Since \(M \) has a mate function \(g \), \(M \) is a left-\(k \)-normal seminear-ring as well (from Theorem 4.2.6(ii)).

(b) Since \(R \) is a right-\(k \)-normal \(P_k \Gamma \) - seminear-ring Theorem 4.2.6 (i) guarantees the existence of a mate function \(f \) for \(R \). Let \(M \) be an ideal of \(R \). Therefore \(f(x)\gamma x\gamma f(x) \in R\Gamma M\Gamma R \subseteq M \) for all \(x \) in \(M \).

Thus we can define a map \(g : M \to M \) such that \(g(x) = f(x)\gamma x\gamma f(x) \) for all \(x \in M \) and \(\gamma \in \Gamma \). Obviously then \(x\gamma g(x)\gamma x = x \) and therefore \(g \) is a mate function for \(M \).

Now let \(x, a \in M \) and \(\gamma \in \Gamma \). Since \(x^k\gamma R = x\gamma R\gamma x \) there exists \(b \in R \) such that \(x^k\gamma a = x\gamma b\gamma x = x\gamma (b\gamma x\gamma g(x))\gamma x \in x\gamma (R\Gamma M)\gamma x \subseteq x\gamma M\gamma x \). Therefore \(x^k\gamma M \subseteq x\gamma M\gamma x \)..........................(3)

Also, since \(x\gamma a\gamma x \in x\gamma R\gamma x = x^k\gamma R \), there exists \(y \in R \) such that \(x\gamma a\gamma x = x^k\gamma y \). Again \(x\gamma a\gamma x = x\gamma g(x)\gamma (x\gamma a\gamma x) = x\gamma g(x)\gamma x^k\gamma y = x^k\gamma y' \) where \(y' = x\gamma g(x)\gamma y \in M\Gamma R \subseteq M \).

Therefore \(x\gamma M\gamma x \subseteq x^k\gamma M \)..........................(4)

From (3) and (4) we get \(x^k\gamma M = x\gamma M\gamma x \) for all \(x \in M \) and
$\gamma \in \Gamma$. i.e. M is a $P_k \Gamma$ - seminear-ring. Since M has a mate function g then M is a right-k-normal seminear-ring as well (from Theorem 4.2.6 (i)).

\[\square \]

Proposition 4.2.12. (a) Let R be a $P_k \Gamma$ - seminear-ring. Then R satisfies left Ore condition.

(b) Let R be a $P'_k \Gamma$ - seminear-ring. Then R satisfies right Ore condition.

Proof. (a) Let A be any subsemigroup of R and let $a \in A$, $r \in R$ and $\gamma \in \Gamma$. Since $a^k \gamma R = a \gamma R \gamma a$ there exists $y \in R$ such that $a^k \gamma r = a \gamma y \gamma a$. i.e. $a_1 \gamma r = a_1 \gamma r_1$ where $a_1 = a^k \in A$ and $r_1 = y \gamma a \in R$ and R fulfills the left Ore condition.

(b) Let A be any subsemigroup of R and let $a \in A$, $r \in R$ and $\gamma \in \Gamma$. Since $R \gamma a^k = a \gamma R \gamma a$ there exists $y \in R$ such that $r \gamma a^k = a \gamma y \gamma a$. i.e. $a_1 \gamma r = a_1 \gamma r_1$ where $a_1 = a^k \in A$ and $r_1 = y \gamma a \in R$ and R fulfills the right Ore condition. \[\square \]

4.3 **Properties of P_1 and $P'_1 \Gamma$ - seminear-rings**

In this section, we prove certain important properties and characterizations of P_1 and $P'_1 \Gamma$ - seminear-rings.

Theorem 4.3.1. Let R be a Γ - seminear-ring with a mate function f. Then we have
(i) every left ideal of \(R \) is a right ideal of \(R \) if and only if \(R \) is a \(P_1 \Gamma \) - seminear-ring.

(ii) every right ideal of \(R \) is a left ideal of \(R \) if and only if \(R \) is a \(P'_1 \Gamma \) - seminear-ring.

Proof. By hypothesis \(R \) is a \(\Gamma \) - seminear-ring with a mate function \(f \).

(i) Assume that every left ideal of \(R \) is a right ideal of \(R \). By the assumption, \(R\gamma x \), being a left ideal for every \(x \in R \) and \(\gamma \in \Gamma \), is also a right ideal of \(R \). Therefore \((R\gamma x)\gamma R \subseteq R\gamma x \). Since \(f \) is a mate function \(x = x\gamma f(x)\gamma x \). From this we get

\[
 x\gamma R = x\gamma f(x)\gamma x\gamma R \subseteq x\gamma R\gamma x \subseteq x\gamma R \gamma x \quad \text{(1)}
\]

\[
 x\gamma R\gamma x \subseteq x\gamma R \quad \text{(2)}
\]

From (1) and (2) we get \(x\gamma R = x\gamma R\gamma x \) for all \(x \in R \) and \(\gamma \in \Gamma \). i.e. \(R \) is a \(P_1 \Gamma \) - seminear-ring.

Conversely, let \(A \) be any left ideal of \(R \), then \(R\Gamma A \subseteq A \).

Let \(a \in A \) and \(y \in R \) and \(\gamma \in \Gamma \), we have \(a\gamma y \in a\gamma R = a\gamma R\gamma a \)

\[
 \Rightarrow a\gamma y = a\gamma y'\gamma a \quad \text{(for some} \ y' \text{ in } R) = (a\gamma y')\gamma a \in R\gamma a.
\]

This forces \(a\gamma y \in R\Gamma A \subseteq A \Rightarrow A\Gamma R \subseteq A \) and hence \(A \) is an ideal.

(ii) Assume that every right ideal of \(R \) is a left ideal of \(R \). By the assumption \(x\gamma R \), being a right ideal for every \(x \in R \), is also a left ideal of \(R \). Therefore \(R\gamma (x\gamma R) \subseteq x\gamma R \). Since \(f \) is a mate function \(x = x\gamma f(x)\gamma x \). From this we get \(R\gamma x = R\gamma x\gamma f(x)\gamma x \in R\gamma x\gamma R\gamma x \)
\[x\gamma R\gamma x \subseteq x\gamma R \gamma x \] (3)
\[x\gamma R\gamma x \subseteq R\gamma x \] (4)

From (3) and (4) we get \(x\gamma R = x\gamma R\gamma x \) for all \(x \in R \) and \(\gamma \in \Gamma \).

i.e. \(R \) is a \(P'_{1} \Gamma \) - seminear-ring.

Conversely, let \(A \) be a right ideal of \(R \), then \(A\Gamma R \subseteq A \).

Let \(a \in A \) and \(y \in R \) and \(\gamma \in \Gamma \), we have \(ya \in R\gamma a = a\gamma R\gamma a \)
\[\Rightarrow y\gamma a = a\gamma y'\gamma a \] (for some \(y' \) in \(R \)) = \(a\gamma (y'\gamma a) \in a\gamma R \). This forces \(y\gamma a \in A\Gamma R \subseteq A \Rightarrow R\gamma A \subseteq A \). Hence \(A \) is an ideal. \(\square \)

Theorem 4.3.2. Let \(R \) be a left normal \(P'_{1} \Gamma \) - seminear-ring. Then

(i) \(M \cap N = M\Gamma N \) where \(M \) and \(N \) are ideals of \(R \)

(ii) Any prime ideal is a completely prime ideal.

(iii) \(R \) has \((*, IFP)\)

Proof. Since \(R \) is left normal \(P'_{1} \Gamma \) - seminear-ring. Theorem 4.2.6 (ii) guarantees that \(R \) has a mate function \(f \).

(i) If \(M, N \) are ideals of \(R \) then \((M \cap N)^{2} = (M \cap N)\Gamma(M \cap N) \). Also for all \(a \) in \(M \cap N \), \(a = a\gamma(f(a)\gamma a) \in (M \cap N)\Gamma(M \cap N) \). This forces \((M \cap N) = (M \cap N)^{2} \). Further, \((M \cap N) = (M \cap N)\Gamma(M \cap N) \subseteq M\Gamma N \).

To prove the reverse inclusion, let us take \(y \in M\Gamma N \). Clearly then \(y \in M\Gamma N \subseteq N \). Also \(y = x\gamma x' \) for some \(x \) in \(M \) and \(x' \) in \(N \). This demands that \(y \in x\gamma R \). Hence \(y \in x\gamma R \subseteq M\Gamma R \subseteq M \). Thus \(y \in M \cap N \) and the desired result follows.
(ii) Let P be a prime ideal of R and let $a\gamma b \in P$. Therefore $R\gamma a\gamma b \subseteq R\Gamma P \subseteq P$.

Since $R\gamma a$ and $R\gamma b$ are ideals of R. Then $R\gamma a \cap R\gamma b = R\gamma a\gamma b$ (using the result (i)). Also $R\gamma a = R\gamma a \cap R = R\gamma a\gamma R$. Hence $R\gamma a\gamma b = R\gamma a\gamma R\gamma b = R\gamma a \cap R\gamma b$. This yields $R\gamma a\gamma R\gamma b = (R\gamma a\gamma b) \subseteq P$ and since P is prime, $R\gamma a \subseteq P$ or $R\gamma b \subseteq P$. Therefore $(a =)a\gamma f(a)\gamma a \in P$ or $(b =)b\gamma f(b)\gamma b \in P$ and the desired result follows.

(iii) Since R has a mate function f, it follows from Theorem 4.2.7 that R has no non-zero nilpotent elements. If $x\gamma y = 0$ then $(y\gamma x)^2 = (y\gamma x)(y\gamma x) = y\gamma (x\gamma y)\gamma x = 0$.

This implies $y\gamma x = 0$. Again for all $a \in R$, $(x\gamma a\gamma y)^2 = (x\gamma a\gamma y)(x\gamma a\gamma y) = x\gamma a\gamma (y\gamma x)\gamma a\gamma y = 0$. Therefore $x\gamma a\gamma y = 0$. Consequently R has $(\ast, IF P)$.

Remark 4.3.3. We observe that, in view of Definition 4.1.3, the three results in Theorem 4.3.2 hold good for a right normal $P_1\Gamma$ - seminear-ring.

Proposition 4.3.4. Let R be a $P_1(P_1')\Gamma$ - seminear-ring with a mate function f. If $E \subseteq C(R)$ then every principal right ideal of R is $P_1(P_1')\Gamma$ - seminear-ring.

Proof. Let R be a $P_1\Gamma$ - seminear-ring with a mate function f. We define $g : R \rightarrow (x\gamma R =) x\gamma f(x)\gamma R$, where $x \in R$ and $\gamma \in \Gamma$, such that $g(a) = x\gamma f(x)\gamma a$ for all a in R. For all y, z in R and $\gamma \in \Gamma$,
\[g(y + z) = x\gamma f(x)\gamma(y + z) = x\gamma f(x)\gamma y + x\gamma f(x)\gamma z = g(y) + g(z). \]

Also \(g(y\gamma z) = x\gamma f(x)\gamma y\gamma z \)
\[= x\gamma f(x)\gamma x\gamma f(x)\gamma y\gamma z \text{(since } x\gamma f(x) \in E) \]
\[= x\gamma f(x)\gamma(x\gamma f(x)\gamma y)\gamma z \]
\[= x\gamma f(x)\gamma y\gamma x\gamma f(x)\gamma z \text{(since } E \subseteq C(R)) \]
\[= g(y)\gamma g(z) \]

Also \(g(y\gamma z) = x\gamma f(x)\gamma y\gamma z \)
\[= (x\gamma f(x)\gamma y)\gamma z \]
\[= y\gamma x\gamma f(x)\gamma z \text{(since } E \subseteq C(R)) \]
\[= y\gamma g(z) \]

Thus \(g \) is a seminear-ring \(R \)-homomorphism. Obviously \(g \) is onto and hence \(x\gamma R \) is a homomorphic image of \(R \). Rest of the proof is taken care of by Theorem 4.2.1.

The proof is similar when \(R \) is a \(P'_1 \Gamma \) - seminear-ring. \(\Box \)