REFERENCES
REFERENCES


3. ACGIH (2001), In: Cincinnati OH (Ed) Documentation of the threshold values and biological exposure indices, American Conference of Governmental Industrial Hygienists 8: 1-6 pp


11. Anon (2004) "Facts about cyanide: Where cyanide is found and how it is used", CDC Emergency preparedness and response, Centers for Disease Control and Prevention Retrieved 13 April 2010


DT (Ed) Microbial degradation of organic compounds, Dekker, New York 253-293 pp


NS, Dommergues YR (Eds) Microbial interaction in agriculture forestry 2: 229-250 pp


47. Chaptwala KD, Babu GR, Vijaya OK, Kumar KP, Wolfram JH (1998) Biodegradation of cyanides, cyanates and thiocyanates to ammonia and
carbon dioxid by immobilized cells of Pseudomonas putida, J Industr Microbiol Biotechnol 20:28-33 pp


associated with the rhizo-sphere of two endemorelict plants capable of degrading broad range of aromatic substrates, Appl Microbiol Bio-technol 91(4): 1227-1238


72. EPA (1975) US Environmental protection agency, code of federal regulations, 40 CFR 424


78. Food and Agricultural Organization (2000) Asia and the Pacific national forest programmes Update 34, Bangkok
86. Ghaham JP (1976) Solving the coking problem, Coal and energy quarterly 10:15 p


123. Huang XD, Alawi YE, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soil, Microchemical J 8: 139-147 pp

124. Huang XD, Alawi YE, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soil, Microchemical J 8: 139-147 pp


133. Jing Yd, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils, J Zhejiang Univ Sci B 8: 192-207 pp

143. Khewar V, Poddar AN (2013) Effect of the coke oven effluent of Bhilai Steel Plant on ALAT and ASAT activities in liver and gills of *Channa punctatus* (Bloch), IJES 3(5): 1737-1748 pp


171. Laurent A (1841) "Mémoire sur le phényle et ses dérivés" (Memoir on benzene and its derivatives), Annales de Chimie et de Physique 3(3): 195-228 pp


178. Lister J (1867) On a new method of treating compound fractures, abscesses, etc. with observations on the condition of suppuration, Lancet 1: 326-9, 357-9, 387-9, 5-9, 2: 95-6 pp


212. Neujahr HY, Gaal A (1973) Phenol hydroxylase from yeast: Purification and properties of the enzyme from Trichosporon cutaneum, Eur Biochemist 35: 386-400 pp


237. Raybuck SA (1992) Microbes and microbial enzymes for cyanide degradation, Biodegr 3: 3-18 pp


239. Reed ML, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth promoting bacteria and either copper or polycyclic aromatic hydrocarbons, Canad J Microbiol 51: 1061-1069 pp


244. Runge FF (1834) "Ueber einige Produkte der Steinkohlen destillation" (On some products of coal distillation), Annalen der Physik und Chemie 31: 65-78 pp


256. Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphlorogucinol from a fluorescent pseudomonad and
investigation of physiological parameters influencing its production, Appl Environ Microbiol 58: 353-358 pp


Somasegaran P, Hoben HJ (1985) Methods in Legume-*Rhizobium* Technology, University of Hawai‘i NifTAL Project and MIRCEN, Department of Agronomy and Soil Science, Hawai‘i Institute of Tropical Agriculture and Human Resources, College of Tropical Agriculture and Human Resources, Paia, Maui, Hawai‘i, 367 p


295. Wang TL, Wood EA, Brewin NJ (1982) Growth regulators: Rhizobium and nodulation in peas, Indole-3-acetic acid from the culture medium of
nodulating and non-nodulating strains of R. leguminosarum, Planta 155: 345-349 pp


