Abstract
ABSTRACT

Over the years, grid computing has emerged as one of the most viable and scalable alternatives to high performance supercomputing, tapping into computing power of the order of Gigaflops. However, the inherent dynamism in grid computing has made it extremely difficult to come up with near-optimal solutions to efficiently schedule tasks in grids. The present work proposes a novel grid-scheduling heuristic that adaptively and dynamically schedule tasks without requiring any prior information on the workload of incoming tasks. The approach models the grid system in the form of a state-transition diagram, employing a prioritized round-robin algorithm with task replication to optimally schedule tasks, using prediction information on processor utilization of individual nodes.

The research explains about improving performance of web servers. In the existing system, round robin and SSL with session model have been used. There are a few drawbacks in this model in terms of throughput and latency.

In communication networks such as Ethernet or packet radio, throughput or network throughput is the average rate of successful message delivery over a communication channel. This data may be delivered over a physical or logical link, or pass through a certain network node.

The main disadvantage of networks is that users become dependent upon them. For example, if a network file server develops a fault, then many users may not be able to run application programs and get access to shared data. A fault on a network may also stop users from being able to access peripherals.
In order to solve this problem, it implements an SSL with Backend forwarding model which will increase overall performance in terms of latency and throughput. Implementing this application will be helpful for web applications because in future websites will increase and web server speed need to be increased.