Chapter 2

Generalized Hankel

Transformation

This chapter deals with the study of generalized extended Hankel Trans-

formations

Bumt (@) =y [ 2 eyl 2.0.1)
and

(Baum®(2))(y) =y /O My (wy)(v)de (2.0.2)

on the testing function space H and H, and also on their dual spaces. If
we take m = 0 the equations (2.0.1) and (2.0.2) reduce the transforma-

tions studied by Mendez [50].
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2.1 Behavior of Generalized Extended Han-

kel Transformation

In this section we will study the behavior of generalized extended Han-
kel Transformation B, ,¢(x) and By, ¥ (x) on the spaces H and H,
and it’s dual H,'. For our convenience, we recall briefly the necessary
definitions and important results which will be useful for proving result.
Let p be arbitrary real number, H, is the space of all infinitely dif-
ferentiable complex valued functions ¢ (z) defined on I, for which

Pl =sup | x"a:_le:L’_Q“_lw(x) | (2.1.1)

zel
exists for each pair of non negative integers n and k with topology gen-
erated by the multinorm p!' . H, is a Frechet space. Now suppose that

Y (x) admits the expansion
Y(w) = 2 [bg + bia® + .+ b + o(a?)] (2.1.2)

in some vicinity of the origin. Obviously function ¢(z), z € I belongs to
the space H), if and only if ¢)(z) is infinitely differentiable, has the form
(2.1.2) at the origin and D*y(x) is of rapid descent as x — oo for each
k=0,1,2,...

H,’ denote the dual space of H, and it’s members are generalized
functions of slow growth. The Altenburg space H turns to be particular

case of H, when y = —1/2 that is H = H_

(IR
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Following differential operators are defined as

Pab(x) = 27 1 Da* 2 (x) (2.1.3)

Ty(z) = 2 ' Dip(x) (2.1.4)

Pip(x) = =22 Da™ 1y () (2.1.5)

T*p(x) = —Dx (). (2.1.6)

Now we will study the operators (2.1.3) and (2.1.4) for the transforma-

tions By, and Bo .

Theorem 2.1.1. For u+ 2m > —% and p € H

Biy1mTY = =B jp1m¥

TBium¥ = —DB1 1m0

Bl,uvm(Pule) = _y2Bl,u,m—1¢

PMTBl,M,mw = Bl,u,m—l (—$2¢)

Bl,u,m(Puw) = yQBl,,LH—l,m—ﬂb

PuBl,qul,nﬂD = Bl,u,mfl’gb

(2.1.7)

(2.1.8)

(2.1.9)

(2.1.10)

(2.1.11)

(2.1.12)
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Proof. We can write L.H.S. of (2.1.7) as

Biusam(Te(x)) = y 0tV / 2 it ()2~ D(x) da
0

= y—(u+1)/ $N+1Ju+1,m—1(5’3y) Dy(x) dx
0

which on integrating by parts gives

ButnT(@) = =y 0 [7 D[ s 0ms(a)] wle) dg21.13)

Using

d
%[w”JMm(a:)] =" J 1 mi1(7) (2.1.14)

(see [46] [p.186])

in right hand side of equation(2.1.13)
Binn(To(a)) =~y [ o ay)ola)da
0
= —Bl%mw(aﬁ).

The L.H.S. of (2.1.8) can be written as-

TBiymt = 41D [y / P () da
0

o0 d
_— / P () (e) da

which on using

d
%[x_”(]yvm(a:)] =2 " Jyr1m-1(x) (2.1.15)

see [46], [p.186]
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yields

TByytb(e) = y #* / Py () (@) de
0

= —Biim. (2.1.16)
We can write L.H.S. of (2.1.9) as
By ym(PTY) = y* /OOO :L'“HJM,m(:IJy)[PMT@b](:E) dx
=y /OO 2T, (2y)2 T DT (x) da
0
= y /000 "I, m(2y) 2™ D2 2T Dy () da
= y M /OOO Ty m(zy)D [1’2M+1D¢($)} dx

= —y" /OOOD [ Ty (zy)] 2% D () d

using (2.1.15) we get
Buiun(BT6) =y [0 s(a) Do)
Again integrating by parts
By ym(PTY) = —y Tl /000 D [ZL‘M—HJH_,_Lm_l(in)] Y(x)dx
using equation (2.1.14) in above equation we get

Bl,u,m(PMT¢) — _y—li+2/ wlﬁ_l']u,m—l(xy)w(x)dx
0

= _yQBLM,m—lw-
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We can write L.H.S. of (2.1.10) as
PTBi,mY = PMTy_“/ x“+1Ju7m(:Cy)¢(x)
0
s DDy [t e ()
0

_ _y—(2u+1)Dy2u+1/ Dy_ﬂxﬂ‘FlJM,m(xy)w(x)dx
0

using(2.1.15)
= —?J_@”H)D?JQMH/ 2Py e (g () da
0
which on using (2.1.14) gives

P/JTBL#,mw = _y_u/ SIZQJM,m_l(CL‘y)gD(x)d:C
0

= Biym-1(—2%).

We can write L.H.S. of (2.1.11) as
Buiun(Bat) =y [~ a2 D 2 e}
which on integrating by parts & using (2.1.15) gives
Bun(Bat) = <y [ D[ i) Poa)de
— [ (e e
= y2Bl,u+1,m—1¢-
L.H.S. of (2.1.12) can be written as

P.Byam = y 2Dy tyet / "2 T 1 (2y) () da
0

— Bl,,u,m—l(ljw)'
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]
Theorem 2.1.2. If+ € H, then
B ys1m(Bpt) = v Ba pmt) (2.1.17)
P;Bm,mw = Bz,u+1,m—1(3?2¢) (2.1.18)
By (T Piap) = —y° By yum—11) (2.1.19)
T*P; B ymth = Baym—1(—271)) (2.1.20)
Proof. The proof follows as theorem (2.1.1). O
Theorem 2.1.3. Let y+ 2m > —% and if ¢ € H, 1 then
B2,u7m(T*¢) = —B2,u+1,m—1”¢ (2.1.21)
T By js1.m¥ = —Bi ym¥ (2.1.22)
Proof. The proof is similar as theorem (2.1.1). ]

Theorem 2.1.4. If m > 0 and Re(p + 2m) > —5 then By ,n is an au-

1
2

tomorphism on H.
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Proof. Repeating (2.1.12) k times and multiplying by (y*)" we get
(?JZ)nPqukH ----- P,u+1-Pu-Bl,u+k,m+k—1¢ = (QQ)HBl,qukfl,erk%(ZUQ)k@D
which on using (2.1.11) n times gives
(V)" Pyttt e Pt - Pu-Bi k19

= Bl7u+k+n7m+k_n_1(Pu+n_1....Pu)<$2)kw (2123)

since
Poir1. P Pop(z) = o7 242872 (g1 D) kg2t 2y), (2.1.24)

thus (2.1.23) becomes

(x2n$—2u+2(k—1)(x—lD)kx2u+231’u+k7m+k_1¢ _

x—,u—k—&-n/ yu+k_n+lju+k—n,m+k—n—1(xy)

0

y T (YT ID) Y (y) dy (2.1.25)
or

$_2M+n+2k_2(513_1D)k$2u+2B1,M+k,m+k—w(ZU) _

/ y2k+n71(y—1D)ny2u+2

0
Y() (@y) " Byt nmsk—n1(2y)dy < 00 (2.1.26)
for p=—-1/2

which implies that By, ,, is an automorphism on H. ]
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2.2 The Generalized Schwartz’s Hankel Trans-

: /
formation B ,,,

Let p be arbitrary real number such that u+2m > —%. The generalized

Hankel transformation B!

1um is defined on H), as the adjoint operator

By m on H, that is

<Bl7u,mf7 w) = (f, BZ,um@) (2.2.1)

Theorem 2.2.1. The generalized Schwartz’s Hankel transformation By , ,

of order 4+ 2m > —% 1$ an automorphism on H/:
Proof. proof will be similar (2.1.4). O

Theorem 2.2.2. Let i+ 2m > —1/2 for every f € H,, we obtain

Bl yam(Tf) = =Byl (2.2.2)
TB1ym(f) = —Blysimf (2.2.3)
B m(PTf) = =y" By 1 f (2.2.4)
P.TB] ,nf =Bl 1 (—2°f) (2.2.5)
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Proof. L.H.S. of (2.2.2) may be written as
<Bi,u+1,mTf7 30> = <Tf B2,u+1 m$0>

= <f, T B, HAL, mSO>

- <f7 Bl TR m90>

= (=Biunf ¥

Thus
By ;T f = =Bl umf (2.2.6)

Now from equation(2.2.3) to equation(2.2.5) can be proved in a sim-

ilar manner.

Theorem 2.2.3. If p+2m > —1/2
<Bi Sy m(PMTf)v 90> - <PMTf7 BQ,u,m90>
<PMTf7 BQ,u,mgp> - <f7 T*P;BZ,u,mg0>

(f, Boym(=y°0)) = (=4’ Bi oS> #)

<Bi,u,m<Pﬂf>7 90> - <Pﬂf7 B2,u,mgp>

Proof. Proof will be similar as (2.1.1).

[]

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)
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