Generalized Hankel

Transformation

This chapter deals with the study of generalized extended Hankel Transformations

$$(B_{1,\mu,m}\psi(x))(y) = y^{-\mu} \int_0^\infty x^{\mu+1} J_{\mu,m}(xy)\psi(x)dx$$
 (2.0.1)

and

$$(B_{2,\mu,m}\psi(x))(y) = y^{\mu+1} \int_0^\infty x^{-\mu} J_{\mu,m}(xy)\psi(x)dx$$
 (2.0.2)

on the testing function space H and H_{μ} and also on their dual spaces. If we take m=0 the equations (2.0.1) and (2.0.2) reduce the transformations studied by Mendez [50].

2.1 Behavior of Generalized Extended Hankel Transformation

In this section we will study the behavior of generalized extended Hankel Transformation $B_{1,\mu,m}\psi(x)$ and $B_{2,\mu,m}\psi(x)$ on the spaces H and H_{μ} and it's dual H_{μ} '. For our convenience, we recall briefly the necessary definitions and important results which will be useful for proving result.

Let μ be arbitrary real number, H_{μ} is the space of all infinitely differentiable complex valued functions $\psi(x)$ defined on I, for which

$$\rho_{n,k}^{\mu} = \sup_{x \in I} |x^n x^{-1} D^k x^{-2\mu - 1} \psi(x)| \qquad (2.1.1)$$

exists for each pair of non negative integers n and k with topology generated by the multinorm $\rho_{n,k}^{\mu}$. H_{μ} is a Frechet space. Now suppose that $\psi(x)$ admits the expansion

$$\psi(x) = x^{2\mu+1} \left[b_0 + b_1 x^2 + \ldots + b_k x^{2k} + o(x^{2k}) \right]$$
 (2.1.2)

in some vicinity of the origin. Obviously function $\psi(x)$, $x \in I$ belongs to the space H_{μ} if and only if $\psi(x)$ is infinitely differentiable, has the form (2.1.2) at the origin and $D^k\psi(x)$ is of rapid descent as $x \to \infty$ for each $k = 0, 1, 2, \ldots$

 H_{μ}' denote the dual space of H_{μ} and it's members are generalized functions of slow growth. The Altenburg space H turns to be particular case of H_{μ} when $\mu = -1/2$ that is $H = H_{-\frac{1}{2}}$.

Following differential operators are defined as

$$P_{\mu}\psi(x) = x^{-2\mu - 1}Dx^{2\mu + 2}\psi(x) \tag{2.1.3}$$

$$T\psi(x) = x^{-1}D\psi(x) \tag{2.1.4}$$

$$P_{\mu}^*\psi(x) = -x^{2\mu+2}Dx^{-2\mu-1}\psi(x) \tag{2.1.5}$$

$$T^*\psi(x) = -Dx^{-1}\psi(x). \tag{2.1.6}$$

Now we will study the operators (2.1.3) and (2.1.4) for the transformations $B_{1,\mu,m}$ and $B_{2,\mu,m}$.

Theorem 2.1.1. For $\mu + 2m \ge -\frac{1}{2}$ and $\mu \in H$

$$B_{1,\mu+1,m}T\psi = -B_{1,\mu+1,m}\psi \tag{2.1.7}$$

$$TB_{1,\mu,m}\psi = -B_{1,\mu+1,m-1}\psi \tag{2.1.8}$$

$$B_{1,\mu,m}(P_{\mu}T\psi) = -y^2 B_{1,\mu,m-1}\psi \tag{2.1.9}$$

$$P_{\mu}TB_{1,\mu,m}\psi = B_{1,\mu,m-1}\left(-x^2\psi\right) \tag{2.1.10}$$

$$B_{1,\mu,m}(P_{\mu}\psi) = y^2 B_{1,\mu+1,m-1}\psi \tag{2.1.11}$$

$$P_{\mu}B_{1,\mu+1,m}\psi = B_{1,\mu,m-1}\psi \tag{2.1.12}$$

Proof. We can write L.H.S. of (2.1.7) as

$$B_{1,\mu+1,m}(T\psi(x)) = y^{-(\mu+1)} \int_0^\infty x^{\mu+2} J_{\mu+1,m-1}(xy) x^{-1} D\psi(x) dx$$
$$= y^{-(\mu+1)} \int_0^\infty x^{\mu+1} J_{\mu+1,m-1}(xy) D\psi(x) dx$$

which on integrating by parts gives

$$B_{1,\mu+1,m}(T\psi(x)) = -y^{-(\mu+1)} \int_0^\infty D\left[x^{\mu+1} J_{\mu+1,m-1}(xy)\right] \psi(x) dx 2.1.13$$

Using

$$\frac{d}{dx}[x^{\nu}J_{\nu,m}(x)] = x^{\nu}J_{\nu-1,m+1}(x)$$
 (2.1.14)

(see [46] [p.186])

in right hand side of equation (2.1.13)

$$B_{1,\mu+1,m}(T\psi(x)) = -y^{-\mu} \int_0^\infty x^{\mu+1} J_{\mu,m}(xy) \psi(x) dx$$
$$= -B_{1,\mu,m} \psi(x).$$

The L.H.S. of (2.1.8) can be written as-

$$TB_{1,\mu,m}\psi = y^{-1}D\left[y^{-\mu}\int_0^\infty x^{\mu+1}J_{\mu,m}(xy)\psi(x)dx\right]$$
$$= y^{-1}\int_0^\infty x^{\mu+1}\frac{d}{dy}[y^{-\mu}J_{\mu,m}(xy)]\psi(x) dx$$

which on using

$$\frac{d}{dx}[x^{-\nu}J_{\nu,m}(x)] = x^{-\nu}J_{\nu+1,m-1}(x)$$
(2.1.15)

see [46], [p.186]

yields

$$TB_{1,\mu,m}\psi(x) = y^{-(\mu+1)} \int_0^\infty x^{\mu+2} J_{\mu+1,m-1}(xy)\psi(x)dx$$
$$= -B_{1,\mu+1,m-1}\psi. \tag{2.1.16}$$

We can write L.H.S. of (2.1.9) as

$$B_{1,\mu,m}(P_{\mu}T\psi) = y^{-\mu} \int_{0}^{\infty} x^{\mu+1} J_{\mu,m}(xy) [P_{\mu}T\psi](x) dx$$

$$= y^{-\mu} \int_{0}^{\infty} x^{\mu+1} J_{\mu,m}(xy) x^{-2\mu-1} Dx^{2\mu+2} T\psi(x) dx$$

$$= y^{-\mu} \int_{0}^{\infty} x^{\mu+1} J_{\mu,m}(xy) x^{-2\mu-1} Dx^{2\mu+2} x^{-1} D\psi(x) dx$$

$$= y^{-\mu} \int_{0}^{\infty} x^{-\mu} J_{\mu,m}(xy) D\left[x^{2\mu+1} D\psi(x)\right] dx$$

$$= -y^{-\mu} \int_{0}^{\infty} D\left[x^{-\mu} J_{\mu,m}(xy)\right] x^{2\mu+1} D\psi(x) dx$$

using (2.1.15) we get

$$B_{1,\mu,m}(P_{\mu}T\psi) = y^{-\mu+1} \int_0^\infty x^{\mu+1} J_{\mu+1,m-1}(xy) D\psi(x) dx$$

Again integrating by parts

$$B_{1,\mu,m}(P_{\mu}T\psi) = -y^{-\mu+1} \int_0^{\infty} D\left[x^{\mu+1}J_{\mu+1,m-1}(xy)\right]\psi(x)dx$$

using equation (2.1.14) in above equation we get

$$B_{1,\mu,m}(P_{\mu}T\psi) = -y^{-\mu+2} \int_0^{\infty} x^{\mu+1} J_{\mu,m-1}(xy) \psi(x) dx$$
$$= -y^2 B_{1,\mu,m-1} \psi.$$

We can write L.H.S. of (2.1.10) as

$$P_{\mu}TB_{1,\mu,m}\psi = P_{\mu}Ty^{-\mu} \int_{0}^{\infty} x^{\mu+1} J_{\mu,m}(xy)\psi(x)$$

$$= y^{-2\mu-1}Dy^{2\mu+1}Dy^{-\mu} \int_{0}^{\infty} x^{\mu+1} J_{\mu,m}(xy)\psi(x)$$

$$= -y^{-(2\mu+1)}Dy^{2\mu+1} \int_{0}^{\infty} Dy^{-\mu}x^{\mu+1} J_{\mu,m}(xy)\psi(x)dx$$

using(2.1.15)

$$= -y^{-(2\mu+1)}Dy^{2\mu+1} \int_0^\infty x^{2\mu+2}y^{-\mu}J_{\mu+1,m-1}(xy)\psi(x)dx$$

which on using (2.1.14) gives

$$P_{\mu}TB_{1,\mu,m}\psi = -y^{-\mu} \int_{0}^{\infty} x^{2} J_{\mu,m-1}(xy)\psi(x)dx$$
$$= B_{1,\mu,m-1}(-x^{2}\psi).$$

.

We can write L.H.S. of (2.1.11) as

$$B_{1,\mu,m}(P_{\mu}\psi) = y^{-\mu} \int_0^\infty x^{\mu+1} J_{\mu,m}(xy) x^{-2\mu-1} Dx^{2\mu+2} \psi(x) dx$$

which on integrating by parts & using (2.1.15) gives

$$B_{1,\mu,m}(P_{\mu}\psi) = -y^{-\mu} \int_{0}^{\infty} D\left[x^{-\mu} J_{\mu+1,m-1}(xy)\right] x^{2\mu+2} \psi(x) dx$$
$$= y^{-\mu+1} \int_{0}^{\infty} x^{\mu+2} J_{\mu+1,m-1}(xy) \psi(x) dx$$
$$= y^{2} B_{1,\mu+1,m-1} \psi.$$

L.H.S. of (2.1.12) can be written as

$$P_{\mu}B_{1,\mu+1,m}\psi = y^{-2\mu-1}Dy^{2\mu+2}y^{-\mu-1}\int_{0}^{\infty}x^{\mu+2}J_{\mu+1,m}(xy)\psi(x)dx$$
$$= B_{1,\mu,m-1}(x^{2}\psi).$$

Theorem 2.1.2. If $\psi \in H_{\mu}$ then

$$B_{2,\mu+1,m}(P_{\mu}^*\psi) = y^2 B_{2,\mu,m}\psi \tag{2.1.17}$$

$$P_{\mu}^* B_{2,\mu,m} \psi = B_{2,\mu+1,m-1}(x^2 \psi)$$
 (2.1.18)

$$B_{2,\mu,m}(T^*P_{\mu}^*\psi) = -y^2 B_{2,\mu,m-1}\psi$$
 (2.1.19)

$$T^*P^*_{\mu}B_{2,\mu,m}\psi = B_{2,\mu,m-1}(-x^2\psi)$$
 (2.1.20)

Proof. The proof follows as theorem (2.1.1).

Theorem 2.1.3. Let $\mu + 2m \ge -\frac{1}{2}$ and if $\psi \in H_{\mu+1}$ then

$$B_{2,\mu,m}(T^*\psi) = -B_{2,\mu+1,m-1}\psi \tag{2.1.21}$$

$$T^* B_{2,\mu+1,m} \psi = -B_{1,\mu,m} \psi \tag{2.1.22}$$

Proof. The proof is similar as theorem (2.1.1).

Theorem 2.1.4. If $m \ge 0$ and $Re(\mu + 2m) \ge -\frac{1}{2}$ then $B_{1,\mu,m}$ is an automorphism on H.

Proof. Repeating (2.1.12) k times and multiplying by $(y^2)^n$ we get

$$(y^2)^n P_{\mu+k+1} \dots P_{\mu+1} P_{\mu} B_{1,\mu+k,m+k-1} \psi = (y^2)^n B_{1,\mu+k-1,m+k-2} (x^2)^k \psi$$

which on using (2.1.11) n times gives

$$(y^{2})^{n} P_{\mu+k+1} \dots P_{\mu+1} P_{\mu} B_{1,\mu+k,m+k-1} \psi$$

$$= B_{1,\mu+k+n,m+k-n-1} (P_{\mu+n-1} \dots P_{\mu}) (x^{2})^{k} \psi$$
(2.1.23)

since

$$P_{\mu+k-1}...P_{\mu+1}P_{\mu}\psi(x) = x^{-2\mu+2k-2}(x^{-1}D)^k x^{2\mu+2}\psi$$
 (2.1.24)

thus (2.1.23) becomes

$$(x^{2n}x^{-2\mu+2(k-1)}(x^{-1}D)^kx^{2\mu+2}B_{1,\mu+k,m+k-1}\psi = x^{-\mu-k+n} \int_0^\infty y^{\mu+k-n+1}J_{\mu+k-n,m+k-n-1}(xy) y^{-2\mu+2n-2}(y^{-1}D)^ny^{2\mu+2}\psi(y)dy$$
(2.1.25)

or

$$x^{-2\mu+n+2k-2}(x^{-1}D)^k x^{2\mu+2} B_{1,\mu+k,m+k-1}\psi(x) =$$

$$\int_0^\infty y^{2k+n-1} (y^{-1}D)^n y^{2\mu+2}$$

$$\psi(y)(xy)^{-\mu-k} B_{1,\mu+k-n,m+k-n-1}(xy) dy < \infty \qquad (2.1.26)$$
for $\mu = -1/2$

which implies that $B_{1,\mu,m}$ is an automorphism on H.

2.2 The Generalized Schwartz's Hankel Transformation $B'_{1,\mu,m}$

Let μ be arbitrary real number such that $\mu + 2m \ge -\frac{1}{2}$. The generalized Hankel transformation $B'_{1,\mu,m}$ is defined on H'_{μ} as the adjoint operator $B_{2,\mu,m}$ on H_{μ} that is

$$\langle B_{1,\mu,m}f,\varphi\rangle = \langle f, B_{2,\mu,m}\varphi\rangle$$
 (2.2.1)

Theorem 2.2.1. The generalized Schwartz's Hankel transformation $B'_{1,\mu,m}$ of order $\mu + 2m \ge -\frac{1}{2}$ is an automorphism on H'_{μ} .

Proof. proof will be similar
$$(2.1.4)$$
.

Theorem 2.2.2. Let $\mu + 2m \ge -1/2$ for every $f \in H'_{\mu}$, we obtain

$$B'_{1,\mu+1,m}(Tf) = -B'_{1,\mu,m}f (2.2.2)$$

$$TB'_{1,\mu,m}(f) = -B'_{1,\mu+1,m}f (2.2.3)$$

$$B'_{1,\mu,m}(P_{\mu}Tf) = -y^2 B'_{1,\mu,m-1}f$$
 (2.2.4)

$$P_{\mu}TB'_{1,\mu,m}f = B'_{1,\mu,m-1}(-x^2f) \tag{2.2.5}$$

Proof. L.H.S. of (2.2.2) may be written as

$$\langle B'_{1,\mu+1,m}Tf,\varphi\rangle = \langle Tf, B_{2,\mu+1,m}\varphi\rangle$$

$$= \langle f, T^*B_{2,\mu+1,m}\varphi\rangle$$

$$= \langle f, -B_{1,\mu,m}\varphi\rangle$$

$$= \langle -B'_{1,\mu,m}f,\varphi\rangle$$

Thus

$$B'_{1,\mu+1,m}Tf = -B'_{1,\mu,m}f (2.2.6)$$

Now from equation (2.2.3) to equation (2.2.5) can be proved in a similar manner.

Theorem 2.2.3. If $\mu + 2m \ge -1/2$

$$\langle B'_{1,\mu,m}(P_{\mu}Tf), \varphi \rangle = \langle P_{\mu}Tf, B_{2,\mu,m}\varphi \rangle \tag{2.2.7}$$

$$\langle P_{\mu}Tf, B_{2,\mu,m}\varphi\rangle = \langle f, T^*P_{\mu}^*B_{2,\mu,m}\varphi\rangle$$
 (2.2.8)

$$\langle f, B_{2,\mu,m}(-y^2\varphi)\rangle = \langle -y^2 B'_{1,\mu,m} f, \varphi\rangle$$
 (2.2.9)

$$\langle B'_{1,\mu,m}(P_{\mu}f), \varphi \rangle = \langle P_{\mu}f, B_{2,\mu,m}\varphi \rangle$$
 (2.2.10)

Proof. Proof will be similar as (2.1.1).