List of Figure

Figure 1.1. Selective pathways for the metabolism of arachidonic acid

Figure 1.2. Arachidonic acid transformation to ω and ω-1 hydroxylase reaction mediated by cytochrome P450 enzyme present in *Candida bombicola* cells.

Figure 2.1. Effect of Glucose (G) concentration of medium (B) on growth of *Candida bombicola* for arachidonic acid derived sophorolipids production

Figure 2.2. Effect of carbon source (Glucose, G) on growth of *Candida apicola* for arachidonic acid derived sophorolipids production in medium (B)

Figure 2.3. Effect of pH on growth of *Candida bombicola* for arachidonic acid derived sophorolipids production in medium (B)

Figure 2.4. Effect of pH on production of arachidonic acid derived sophorolipids by *Candida apicola* in medium (B)

Figure 2.5. Effect of temperature on production of arachidonic acid derived sophorolipids by *Candida bombicola* in medium (B)

Figure 2.6. Effect of temperature on production of arachidonic acid derived sophorolipids by *Candida apicola* in medium (B)

Figure 2.7. Effect of ferric ions on the production of arachidonic acid derived sophorolipids by *Candida bombicola*

Figure 2.8. Effect of metal ions on growth of *Candida apicola* for arachidonic acid derived sophorolipids production
Figure 2.9. Schematic representation of an amphiphilic molecule showing the hydrophobic long chain hydrocarbons and hydrophilic head group. The amphiphilic molecules we have used in this work is octadecylamine [ODA; CH3-(CH2)17-NH2].

Figure 3.1. Structures of the sophorolipids synthesized by *Candida bombicola* when grown on with glucose and arachidonic acid (C\textsubscript{20}:4)

Figure 3.2. Thin Layer Chromatography of arachidonic acid (C\textsubscript{20}:4) derived sophorolipids

Figure 3.3. Picture of silicagel chromatography used dialysis tubing packed with silica gel UV-visible GF 254 nm for purification of arachidonic acid derived sophorolipids. Nine different bands were visualized under UV-visible illumination at 254 nm.

Figure 3.4. The mass spectrum of purified arachidonic acid derived sophorolipids produced from glucose and arachidonic acid by dry silicagel chromatography using dialysis bag

A. Mass spectrum of diacetate lactonic arachidonic acid derived sophorolipid (Mol.Wt.710)

B. Mass spectrum of diacetate acidic arachidonic acid derived sophorolipid (Mol.Wt.728)

C. Mass spectrum of monoacetate lactonic arachidonic acid derived sophorolipid (Mol.Wt.668)

Figure 3.5. FTIR spectra demonstrate, curve (1 and 2) of purified sophorolipids by dry silicagel chromatography using dialysis
tubing and curve (3) as synthesized arachidonic acid derived sophorolipids produced from *Candida bombicola* The band at 1445 cm\(^{-1}\) (a) that corresponds to the C-O-H in plane bending of carboxylic acid have shown in curve (1 and 2).

Figure 3.6. Representative Gas chromatography spectra of the methyl ester silyl ether of 20-hydroxy 5Z, 8Z, 11Z, 14Z -eicosatetraenoic acid (a) and methyl ester silyl ether of free hydroxylated fatty acid obtained from lactonic diacetate sophorolipids (b) illustrating the peak at gas chromatographic retention time 18.6 min.

Figure 3.7. Partial electron impact mass spectrum of monohydroxylated derivative of arachidonic acid as detected by GC-MS. The compound was extracted from diacetate lactonic arachidonic derived sophorolipid and identified as the methyl ester silyl ether of 20-hydroxy 5Z, 8Z, 11Z, 14Z -eicosatetraenoic acid.

Figure 3.8. Partial electron impact mass spectrum of monohydroxylated derivative of arachidonic acid as detected by GC-MS. The compound was extracted from diacetate lactonic arachidonic derived sophorolipid and identified as the methyl ester silyl ether of 19-hydroxy 5Z, 8Z, 11Z, 14Z -eicosatetraenoic acid.

Figure 4.A.1. Transformation of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) and 19-hydroxyeicosatetraenoic acid (19-HETE) mediated by cytochrome P450 enzyme present in *Candida bombicola* cells.
Figure 4.A.2. (A) QCM mass uptake data recorded during immobilization of *Candida bombicola* cells onto a 250 Å thick ODA film deposited on an AT-cut 6 MHz quartz crystal as a function of time of immersion in the cell suspension. The error bars indicate 10% deviation to the data from their mean values as determined from the three separate measurements.

Figure 4.A.2. (B) FTIR spectra recorded from an as-deposited 250 Å thick ODA film (curve 1) and the ODA film after complete immobilization of the *Candida bombicola* cells (curve 2) on Si (111) substrates.

Figure 4.A.3. (A) SEM images recorded from patterned thermally evaporated ODA thin film. (B) and (C) shows EDAX spot profile analysis on masked. [In Figure 4. A. 3. (A) marked as x and exposed surface of patterned ODA lipid films (marked as +).]

Figure 4.A.4. (A) and (B) Low and high magnification of SEM images after immobilization of *Candida bombicola* cells onto the ODA film surface.

Figure 4.A.5. Partial electron impact mass spectrum of 20-HETE as detected by GC-MS. The compounds were extracted by from sophorolipids, synthesized by *Candida bombicola* cells and was identified as the methyl ethyl silyl ether of 20-hydroxy-5Z, 8Z, 11Z, 14Z-eicosatetraenoic acid (20-HETE).

Figure 4.A.6. Partial electron impact mass spectrum of 19-HETE as detected
by GC-MS. The compounds were extracted by from sophorolipids, synthesized by Candida bombicola cells and was identified as the methyl ethyl silyl ether of 19-hydroxy-5Z, 8Z, 11Z, 14Z-eicosatetraenoic acid (19-HETE)

Figure 4.A.7. Low (A) and high (B) magnification SEM images of Candida bombicola whole cells immobilized on thermally evaporated octadecylamime lipid films after one cycle of reaction

Figure 4.B.1. Illustration of hydrophobization of nanogold membrane using octadecylamine and thereafter, immobilization of the Candida bombicola whole cells on the hydrophobic nanogold membrane

Figure 4.B.2. (A) UV-vis spectra recorded from the as-prepared nanogold membrane on quartz substrate

Figure 4.B.2. (B) FTIR spectra recorded from the nanogold membrane before (curve 1) and after (curve 2) hydrophobization with the octadecylamine (ODA).

Figure 4.B.3. XRD patterns recorded from the gold nanoparticle membrane. Inset shows the spot profile EDAX recorded form the gold nanoparticle polymeric membrane

Figure 4.B.4. (A) and (B) Low and high magnification of TEM micrographs of the free standing nanogold membrane

Figure 4.B.4. (C) and (D) The TEM micrographs of the gold nanoparticles leached from the nanogold membrane

Figure 4.B.5. (A) and (B) Low and high magnification of SEM images of
nanogold membrane synthesized at the liquid-liquid interface and transferred on Si(111) substrate.

Figure 4.B.6. (A) and (B) The SEM images of the *Candida bombicola* cell immobilized on the hydrophobic nanogold membranes.

Figure 4.B.6. (C) and (D) The *Candida bombicola* cells immobilized on the as prepared nanogold membrane.

Figure 4.B.7. (A) and (B) The SEM images after the immobilization of the *Candida bombicola* cells on gold nanoparticles leached polymeric membrane.

Figure 4.B.8. (A) and (B) Mass spectrum of the sophorolipids produced from the arachidonic acid. The sophorolipids are Lactonic (A) and Acidic (B) forms of diacetate as detected by mass spectroscopy.

Figure 4.B.9. (A) and (B) Low and High magnification of SEM images of the immobilized *Candida bombicola* cells on the hydrophobic nanogold membrane after one reaction cycle.

Figure 4.B.10. Partial electron impact mass spectrum of 20-HETE as detected by GC-MS. The compounds were extracted by from sophorolipids, synthesized by *Candida bombicola* cells and was identified as the methyl ester silyl ether of 20-hydroxyeicosatetraenoic acid (20-HETE). The inset shows the structure of the methyl ester silyl ether of 20-hydroxy eicosatetraenoic acid (20-HETE)
Figure 4.B.11. Partial electron impact mass spectrum of 19-HETE as detected by GC-MS. The compounds were extracted from sophorolipids, synthesized by Candida bombicola cells and was identified as the methyl ester silyl ether of 19-hydroxyeicosatetraenoic acid (19-HETE). The inset shows the structure of the methyl ester silyl ether of 19-hydroxy eicosatetraenoic acid (19-HETE)