CONTENTS

CHAPTER-1
INTRODUCTION TO NANOMATERIALS
1.1 Introduction to nanoscale materials
1.2 Physical significance of nanostructures
1.3 Classification of nanostructures
1.4 Effects of nanometric length scale
 1.4.1 Discreteness of electronic energy levels
 1.4.2 Structural changes
1.5 Synthesis of nanostructures
1.6 Nucleation and growth of nanoparticles
1.7 Swift heavy ion induced modification of materials
 1.7.1 Swift Heavy Ion induced modifications of nanodimensional systems
1.8 Motivation and structure of the thesis
References

CHAPTER-2
FUNDAMENTAL PHYSICAL PRINCIPLES
2.1 Noble metal particles and surface plasmon resonance
 2.1.1 Mie theory
 2.1.2 Optical material functions of bulk metals (Au and Ag)
 2.1.3 Interband transitions
 2.1.4 Penetration depth of EM wave in metals: Skin depth
2.2 Quasistatic response of metal nanoparticle to an electric field
 2.2.1 Surface plasmon resonance peak position and shape
 2.2.2 The effects of size
 2.2.3 SPR of nonspherical particles: Extension of Mie theory
2.3 Ion-solid interaction
 2.3.1 Nuclear energy loss
 2.3.2 Electronic energy loss
2.3.3 Range of ions in solid

2.3.4 Formation of ion tracks in materials by swift heavy ions
 2.3.4.1 Coulomb explosion model
 2.3.4.2 Thermal spike model

2.4 Nano-engineering by swift heavy ions

References

CHAPTER-3

EXPERIMENTAL TECHNIQUES
3.1 Synthesis of metal-silica nanocomposite thin film
 3.1.1 Metal-silica nanocomposite film by co-sputtering
 3.1.1.1 Atom beam co-sputtering
 3.1.2 Metal-silica nanocomposite film by thermal co-evaporation
 3.1.2.1 Resistive heating
 3.1.2.2 Electron beam heating

3.2 Swift Heavy Ion irradiation facility
 3.2.1 Introduction to 15 UD Pelletron accelerator at IUAC
 3.2.2 Material science beamline at IUAC

3.3 Characterization techniques
 3.3.1 Rutherford backscattering spectrometry (RBS)
 3.3.2 Spectroscopic techniques
 3.3.2.1 UV-Visible absorption spectroscopy: SPR absorption
 3.3.2.2 Raman spectroscopy
 3.3.3 X-ray diffraction
 3.3.4 Transmission electron microscopy
 3.3.4.1 Illumination system
 3.3.4.2 Interaction with the Specimen
 3.3.4.3 Image formation
 3.3.5 Atomic Force Microscopy
 3.3.5.1 Basic theory of atomic force microscopy

References
CHAPTER-4

SYNTHESIS OF METAL-DIELECTRIC NANOCOMPOSITES

4.1 Synthesis of metal-dielectric nanocomposites by atom beam co-sputtering
 4.1.1 Synthesis of Ag nanoparticles in silica matrix
 4.1.1.1 Experimental work
 4.1.1.2 Results and discussion
 4.1.1.2.1 RBS Analysis
 4.1.1.2.2 Optical Absorption Studies
 4.1.1.2.3 Transmission electron microscopy studies
 4.1.1.2.3 X-ray diffraction analysis
 4.1.1.3 Ag-silica nanocomposites as a glucose sensor
 4.1.2 Synthesis of Au-SiO₂ nanocomposites
 4.1.2.1 Experimental details
 4.1.2.2 Results and discussion
 4.1.2.2.1 RBS analysis
 4.1.2.2.2 Optical absorption studies
 4.1.2.2.3 Transmission electron microscopy results
 4.1.2.2.4 X-ray diffraction analysis
 4.1.2.3 Detection of human ovarian cancer cells using Au-silica nanocomposites
 4.1.3 Au-ZnO: A tunable surface plasmonic nanocomposite
 4.1.3.1 Experimental details
 4.1.3.2 Results and discussion
 4.1.3.2.1 Optical absorption results
 4.1.3.2.2 X-ray diffraction studies
 4.1.3.2.3 Transmission electron microscopy results
 4.1.3.3 Surface enhanced Raman scattering in C₇₀ molecules
 4.1.4 Superiority of atom beam co-sputtering over other techniques

4.2 Synthesis of gold nanorings by evaporation and annealing
 4.2.1 Experimental details
 4.2.2 Results and discussion
4.2.2.1 RBS analysis
4.2.2.2 Optical absorption results
4.2.2.3 Atomic force microscopic studies
4.2.2.3 X-ray diffraction studies

References

CHAPTER-5

SWIFT HEAVY ION ENGINEERING OF NANOPARTICLES

5.1 Introduction to SHI engineering of nanoparticles
5.2 SHI induced size reduction of gold nanoparticles
 5.2.1 Experimental details
 5.2.2 Results and discussion
 5.2.2.1 Optical absorption studies
 5.2.2.2 Transmission electron microscopy studies
5.3 SHI induced growth of gold nanoparticles: An insitu- XRD study
 5.3.1 Experimental details
 5.3.2 Results and discussions
 5.3.2.1 RBS and X-ray diffraction results
 5.3.2.2 Transmission electron microscopy studies
5.4 SHI induced elongation of Au nanoparticles
 5.4.1 Experimental details
 5.4.2 Results and discussions
 5.4.2.1 Transmission electron microscopy studies
 5.4.2.2 Optical absorption results
5.5 Summary of nano-engineering by swift heavy ions

References

CHAPTER-6

ELECTRON BEAM IRRADIATION OF GOLD-SILICA NANOCOMPOSITE

6.1 Introduction
6.2 Fundamentals of electron-matter interaction
6.2.1 Displacement cross-section
6.2.2 Energy loss of electrons in solid
6.2.3 Rise in temperature due to electron beam irradiation
6.3 Experimental details
6.4 Results and discussions
6.5 Summary
References

CHAPTER-7

SUMMARY AND FUTURE PROSPECTUS

7.1 Summary of the work done
7.2 Future scope