<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>Abbreviations & Symbols</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Tissue culture of plants</td>
<td>16</td>
</tr>
<tr>
<td>1.2</td>
<td>Objectives</td>
<td>18</td>
</tr>
<tr>
<td>2.</td>
<td>Review of Literature</td>
<td>20</td>
</tr>
<tr>
<td>2.1</td>
<td>Secondary metabolites</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Alpinia galanga (L.) Willd</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Medicinal importance of Alpinia galanga (L.) Willd</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Anti-viral activity</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Anti-tumour activity</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Anti-parasitic activity</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Anti-microbial activity</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>2.3.5 Anti-mycotic activity</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2.3.6 Gastroprotective activity</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2.3.7 Immune booster</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>2.3.8 Anti-oxidant activity</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>2.3.9 Hypoglycemic activity</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2.3.10 Anti-allergic principles</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2.3.11 Anti-arthritis</td>
<td>41</td>
</tr>
</tbody>
</table>
2.3.12 Flavour components

2.4 Micropropagation

2.5 Callus and Suspension cultures

2.6 Hairy roots

2.6.1 *Agrobacterium rhizogenes*

2.6.2 Advantage of hairy roots

2.7 Antimicrobial action

2.7.1 Activity of plant extracts/spices and essential oils

2.7.2 Antibacterial mechanisms

3. Materials & Methods

3.1 Micropropagation

3.1.1 Culture media

3.1.2 Media sterilization

3.1.3 Phytohormones

3.1.4 Plant material

3.1.5 Surface sterilisation

3.1.6 Culture conditions

3.1.7 *In vitro* propagation

3.1.8 Callus induction

3.1.9 Indirect organogenesis

3.1.10 Histological studies

3.1.11 Extraction of ACA

3.1.12 Phytochemical analysis in callus
3.1.13 Acclimatization

3.2 Genetic transformations

3.2.1 Assessment of different explants for transformation frequency

3.2.2 Genetic transformations in *A. galanga* using different strains of *A. rhizogenes*

3.2.3 Study of infection technique and duration of bacterial treatment on genetic transformations (Bacterial growth)

3.2.4 Effect of co-cultivation duration on growth and transformation of explants

3.2.5 Role of temperature in hairy root induction

3.2.6 Effect of media pH on growth and proliferation of hairy roots

3.2.7 Influence of different concentrations of Cefotaxime

3.2.8 Growth of transformants

3.2.9 Growth of hairy roots in liquid media

3.2.10 Quantification of ACA in transformants by HPLC

3.2.11 Molecular confirmation of transformants

3.2.12 Statistical Analysis

3.3 Antimicrobial action

3.3.1 Plant extracts

3.3.2 Bacterial cultures

3.3.3 Determination of antibacterial activity

3.3.4 Determination of MIC & MBC
4. Results and Discussion

4.1 Micropropagation

4.1.1 *In vitro* establishment
4.1.2 Callus initiation
4.1.3 Indirect Organogenesis
4.1.4 Rooting of regenerated plants
4.1.5 Histological studies
4.1.6 Analysis of phytoconstituents in callus cultures and regenerated plantlets
4.1.7 Acclimatization
4.1.8 Discussion

4.2 Genetic transformation studies

4.2.1 *In vitro* transformations
4.2.2 Assessment of different explants for transformation frequency
4.2.3 Evaluation of explants using different strains of *A. rhizogenes*
4.2.4 Effect of infection process and bacterial action on transformations
4.2.5 Study of co-cultivation interval on transformation of explants
4.2.6 Role of temperature in hairy root induction
4.2.7 Effect of pH variation on growth and proliferation of hairy roots
4.2.8 Influence of different concentrations of Cefotaxime
4.2.9 Growth of transformants
4.2.10 Growth of hairy roots in liquid media
4.2.11 Quantification of ACA by HPLC 116
4.2.12 ACA accumulation in transformed roots 117
4.2.13 Molecular confirmation of transformation 125
4.2.14 Discussion 126

4.3 Antimicrobial activity of Alpinia galanga 132

4.3.1 Activity of antimicrobial principles 132
4.3.2 MIC and MBC values of Alpinia galanga towards the pathogens 142
4.3.3 GC-MS results of Alpinia galanga methanol Extracts 143
4.3.4 Discussion 147

5. Conclusion 152
6. References 154
7. Appendix
8. Publication