Present study aims to analyse and compare the biofilms of the standard *Cronobacter sakazakii* (MTCC-2958) and the isolate from goat milk sample (procured from the cell biotechnology lab, DEI, Agra) through SEM and their control.

Planktonic or sessile cells are the two distinct states of bacteria in which they are found. Planktonic cells are classically defined ‘as free flowing bacteria in suspension’ as opposed to the sessile biofilm state: ‘a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to an inert or living surface’.

Thus, the biofilms formed by the pathogen are studied through SEM. Various biochemical tests were done prior to SEM. The revived cultures were streaked on to the TSA plates to inoculate the colonies in the TSB broth along with 1%glucose and the sterilized substrates. Biofilm formed on the surface of the substrates were then fixed by modified Karnovsky’s method. Substrates were sputter coated and were analysed by SEM.

The growth control of biofilms was carried out by antibiotics, natural products and LAB by agar well diffusion method on MHA (Muller-Hinton agar) plates. It was observed that the biofilms of the isolate on glass were susceptible to tetracycline. This same drug exhibited the maximum zone of inhibition against the biofilms of the standard *C.sakazakii* (MTCC-2958) grown on glass.

Gentamycin showed the biggest zone of inhibition against the biofilms of the isolate on steel substratum. The biofilms of standard *C.sakazakii* (MTCC-2958) on all the three substrata as well as to their planktonic cells were found to be resistant to gentamycin.

Alcoholic extracts of ‘amla’ were found to show maximum zone of inhibition against biofilms of the isolate grown on aluminium and steel. *Lactobacillus fermentum* (MTCC-903) was found to give largest zones of inhibition against the biofilms of the isolate grown on steel, glass and aluminium surfaces.
Thus, to control the formation of biofilms on medical devices, anti-adhesion compounds have significantly gained a lot of attention. Anti-adhesion compounds may include milk constituents, low molecular weight chitosan, polymers, dietary constituents, and furanone compounds. Besides them, antibiotics are also been used, to prevent biofilm formation, as coating agents on medical devices. Though antibiotic coating is a challenge due to resistance but this may be a way to find other compounds to control biofilms.