TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>1.2</td>
<td>Nanotechnology and drug delivery</td>
</tr>
<tr>
<td>1.3</td>
<td>Nanoparticle targeting</td>
</tr>
<tr>
<td>1.4</td>
<td>Why there is a need of drug delivery and targeting</td>
</tr>
<tr>
<td>1.5</td>
<td>Aim and objective of the present studies</td>
</tr>
<tr>
<td>1.6</td>
<td>Objectives</td>
</tr>
<tr>
<td>1.7</td>
<td>Studies</td>
</tr>
<tr>
<td>1.8</td>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Literature Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Nanotechnology and drug delivery</td>
</tr>
<tr>
<td>2.2</td>
<td>Nanoparticles used in drug delivery</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Dendrimers</td>
</tr>
<tr>
<td>2.2.1.1</td>
<td>Approaches for Dendrimer Synthesis</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Liposomes</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Carbon Nanotube</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Metal based Nanoparticles</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Ceramic nanoparticles</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Polymeric micelles</td>
</tr>
<tr>
<td>2.2.6.1</td>
<td>What so good about polymeric micelles</td>
</tr>
<tr>
<td>2.3</td>
<td>Factors affecting Nanodrug delivery</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Size and shape</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Surface</td>
</tr>
<tr>
<td>2.4</td>
<td>Modes of action</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Passive targeting</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Active targeting</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>First order targeting</td>
</tr>
<tr>
<td>2.4.2.2</td>
<td>Second order targeting</td>
</tr>
<tr>
<td>2.4.2.3</td>
<td>Third order targeting</td>
</tr>
</tbody>
</table>
2.5 Important techniques for characterization of nanoparticles

2.5.1 Dynamic Light Scattering (DLS)
2.5.2 Transmission Electron Microscopy (TEM)
2.5.3 Infrared Spectroscopy
2.5.4 Nuclear Magnetic Resonance (NMR)
2.5.5 X-ray Diffraction (XRD)

2.6 Liver

2.6.1 Some important liver diseases
2.6.1.1 Hepatitis
2.6.1.2 Tumor
2.6.1.3 Cirrhosis
2.6.1.3.1 Signs and symptoms of cirrhosis
2.6.2 Models for hepatotoxicity
2.6.2.1 Thioacetamide
2.6.2.2 Galactosamine
2.6.2.3 Ethanol
2.6.2.4 Paracetamol
2.6.2.5 Carbon tetrachloride
2.6.3 Different ligand-based liver targeting strategies
2.6.3.1 Asialoglycoprotein Receptor (ASGP-R) targeting ligands
2.6.3.2 Glycyrrhetinic Acid (GA) receptor targeting ligands
2.6.3.3 Bile Acid receptor targeting ligands

2.7 Brain

2.7.1 Barrier
2.7.1.1 Blood–cerebrospinal fluid barrier (BCSFB)
2.7.1.2 Blood Brain Barrier (BBB)
2.7.1.3 Other barriers
2.7.1.4 Strategies Brain drug delivery
2.7.1.4.1 Osmotic disruption
2.7.1.4.2 Bradykinin receptor-mediated BBB opening
2.7.1.4.3 Ultrasound-mediated BBB opening
2.7.1.4.4 Convection-enhanced drug delivery (CED)
2.7.1.4.5 P-glycoprotein inhibitors
2.7.1.4.6 Intraventricular/Intrathecal delivery
2.7.2 Stroke
2.7.2.1 Classification of stroke
2.7.2.1.1 Ischemic Stroke
2.7.2.1.1.A Ischemia on the basis of area affected
 2.7.2.1.1.A 1 Focal brain ischemia
 2.7.2.1.1.A 2 Global brain ischemia
2.7.2.1.1.B On the basis of causes
 2.7.2.1.1.B 1 Thrombotic stroke
 2.7.2.1.1.B 2 Embolic stroke
2.7.2.1.2 Hemorrhagic
 2.7.2.1.2.A Intra-axial hemorrhage (blood inside the brain)
 2.7.2.1.2.A 1 Intraparenchymal hemorrhage
 2.7.2.1.2.A 2 Intraventricular hemorrhage
 2.7.2.1.2.B Extra-axial hemorrhage
 2.7.2.1.2.B 1 Epidural hematoma
 2.7.2.1.2.B 2 Subdural hematoma
 2.7.2.1.2.B 3 Subarachnoid hemorrhage
2.7.3 Risk factors associated with stroke
 2.7.3.1 High Blood pressure
 2.7.3.2 Blood cholesterol level
 2.7.3.3 Diabetes
 2.7.3.4 Atrial fibrillation
 2.7.3.5 Carotid artery blockage
 2.7.3.6 Sex (gender)
 2.7.3.7 Heredity
 2.7.3.8 Age
 2.7.3.9 Transient ischemic attacks (TIAs) or heart attack
 2.7.3.10 Cigarette smoking
 2.7.3.11 Diets
 2.7.3.12 Alcohol consumption
 2.7.3.13 Geographic location
 2.7.3.14 Socioeconomic factors
2.7.4 Symptoms of stroke
2.7.5 The warning signs
2.7.6 Characteristics of an ideal stroke model
2.7.7 Classification of animal ischemia models
2.7.7.1 Global Cerebral Ischemia
2.7.7.1.A Elevation of intracranial pressure
2.7.7.1.B Combination of occlusion of the major arteries
2.7.7.1.C Cervical compression
2.7.7.2 Focal Ischemia
2.7.7.2.A Photo-thrombosis Model
2.7.7.2.B Middle Cerebral Artery Occlusion (MCAO) Model
2.7.7.2.B 1 Proximal MCA occlusion
2.7.7.2.B 2 Distal MCA occlusion
2.7.7.2.B 3 Intraluminal arterial occlusion without craniotomy

2.8 Pathophysiology of cerebral ischemia and liver toxicity model 35-38
2.8.1 ROS and antioxidant defence mechanism
2.8.2 Inflammatory markers

2.9 Quercetin 38-41
2.9.1 Sources
2.9.2 Structure
2.9.3 Properties
2.9.4 Side effect or damaging effect
2.9.5 Bioavailability
2.9.6 Mechanism of Action
2.9.6.1 Anti-oxidative action
2.9.6.2 Direct radical scavenging action
2.9.6.3 Inducible nitric oxide synthase inhibitory action
2.9.7 Reported Nanodrug delivery system for quercetin

2.10 Thymoquinone 41-42
2.10.1 Sources
2.10.2 Properties
2.10.3 Side-effects or damaging effects
2.10.4 Mechanism of action
2.10.4.1 Antioxidant agent
2.10.4.2 Anti-inflammatory effect
2.10.5 Reported nanodrug delivery system for Thymoquinone
Chapter 3

Materials and Method

3.1 Materials and Method

3.2 Nanoparticle for liver studies
 3.2.1 Polymeric nanoparticle preparation
 3.2.2 Nanoparticle surface modification with PAG
 3.2.3 Drug loading

3.3 Nanoparticle for cerebral ischemia studies
 3.3.1 Polymeric nanoparticle preparation
 3.3.2 Conjugation with chitosan
 3.3.3 Drug Loading
 3.3.4 Coating with tween 80

3.4 Characterization of nanoparticles
 3.4.1 Fourier transform infrared (FTIR) spectroscopy measurements
 3.4.2 Nuclear magnetic resonance (NMR)
 3.4.3 Dynamic light scattering (DLS) analysis of nanoparticle
 3.4.4 Transmission electron microscopy (TEM) of nanoparticle

3.5 Entrapment efficiency (E%)
3.6 In vitro release kinetics

3.7 Animal Models
 3.7.1 Long-term liver toxicity model (liver cirrhosis)
 3.7.2 Short-term toxicity model
 3.7.3 Cerebral ischemia model (MCAO)
3.8 Evaluation of biological studies

3.8.1 Behaviour study (brain study)
3.8.1.1 Spontaneous Motor Activity (SMA)
3.8.1.2 Grip Strength
3.8.1.3 Flexion Test (FT)
3.8.2 Infarct analysis (TTC)
3.8.3 Histological examination
3.8.4 Collagen staining (the Masson trichrome method)
3.8.5 Immunohistochemistry (NOS-2, COX-2 and NF-kB)
3.8.6 Tissue preparation and biochemical parameters
3.8.6.1 Lipid peroxidation (LPO) assay
3.8.6.2 Glutathione-S-Transferase (GST) assay
3.8.6.3 Reduced glutathione (GSH) assay
3.8.6.4 Glutathione reductase (GR) activity determination
3.8.6.5 Glutathione peroxidase (GPx) activity determination
3.8.6.6 Superoxide dismutase (SOD) activity determination
3.8.6.7 Catalase activity determination
3.8.6.8 Protein determination
3.8.7 Serum Parameters
3.8.7.1 Aspartate aminotransferase (AST) assay
3.8.7.2 Alanine transaminase (ALT) assay
3.8.7.3 Alkaline phosphatase (ALP) assay
3.8.7.4 Lactate dehydrogenase (LDH) assay

3.9 Statistical analysis

3.10 References

Chapter 4

Establishment of liver cirrhosis model and its treatment with Quercetin and Nanoquercetin

4.1 Introduction

4.2 Nanoparticle Synthesis
4.2.1 Polymeric nanoparticle preparation
4.2.2 Nanoparticle surface modification with PAG
4.2.3 Drug loading
4.3 Characterization

4.3.1 Fourier transform infrared (FTIR) spectroscopy measurements
4.3.2 Nuclear magnetic resonance (NMR)
4.3.3 DLS analysis of encapsulated quercetin nanoparticle (NQ)
4.3.4 TEM of the encapsulated quercetin nanoparticle (NQ)
4.3.5 Entrapment efficiency (E%)
4.3.6 Nanoquercetin in vitro release kinetics

4.4 Animals

4.4.1 Experimental procedure

4.5 Biochemical analyses

4.5.1 Aspartate aminotransferase (AST) assay
4.5.2 Alanine transaminase (ALT) assay
4.5.3 Alkaline phosphatase (ALP) assay
4.5.4 Lactate dehydrogenase (LDH) assay
4.5.5 Lipid peroxidation (LPO) assay
4.5.6 Glutathione-S-Transferase (GST) assay
4.5.7 Reduced glutathione (GSH) assay
4.5.8 Glutathione reductase (GR) activity determination
4.5.9 Glutathione peroxidase (GPx) activity determination
4.5.10 Superoxide dismutase (SOD) activity determination
4.5.11 Catalase activity determination
4.5.12 Protein determination

4.6 Histological examination

4.7 Collagen staining (Masson trichrome (MT) method)

4.8 NOS-2 and NF-kB immunohistochemistry

4.9 Statistical analysis

4.10 Results

4.10.1 FTIR spectroscopy studies on PAG-coated NIPAAM nanoparticles
4.10.2 NMR studies on PAG-coated NIPAAM Nanoparticles
4.10.3 DLS analysis for NQ nanoparticles
4.10.4 TEM of NQ nanoparticles
4.10.5 Entrapment efficiency and in vitro release kinetics
4.10.6 Q and NQ decreased the TBARS level in liver
4.10.7 The effect of Q and NQ on endogenous antioxidant system
4.10.8 The effects of Q and NQ on AST, ALT, ALP and LDH
4.10.9 Histopathological findings
4.10.10 Collagen expression
4.10.11 NOS-2 and NF-kB immunohistochemical expression

4.11 Discussion 17-20
4.12 Conclusion 20-21
4.13 References 22-27

Chapter 5
Establishment of a short term hepatotoxicity Model and its treatment with Thymoquinone and Nanothymoquinone

5.1 Introduction 1-2
5.2 Nanoparticle Synthesis 2-3
 5.2.1 Polymeric nanoparticle preparation
 5.2.2 Nanoparticle surface modification with PAG
 5.2.3 Drug loading
5.3 Characterization of nanoparticles 3-4
 5.3.1 Fourier transform infrared (FTIR) spectroscopy measurements
 5.3.2 Nuclear magnetic resonance (NMR)
 5.3.3 DLS analysis of thymoquinone encapsulated nanoparticles (NTQ)
 5.3.4 TEM of thymoquinone encapsulated nanoparticles (NTQ)
 5.3.5 Entrapment efficiency (E%)
 5.3.6 In vitro release kinetics
5.4 Animals 4-5
 5.4.1 Experimental Procedure
5.5 Biochemical analyses 5-7
 5.5.1 Aspartate aminotransferase (AST) assay
 5.5.2 Alanine transaminase (ALT) assay
 5.5.3 Alkaline phosphatase (ALP) assay
 5.5.4 Lactate dehydrogenase (LDH) assay
 5.5.5 Lipid peroxidation (LPO) assay
 5.5.6 Glutathione-S-Transferase (GST) assay
 5.5.7 Reduced glutathione (GSH) assay
 5.5.8 Glutathione reductase (GR) activity determination
Chapter 6

Establishment of Cerebral Ischemia Model (MCAO) and its treatment with Nanoriluzole

6.1 Introduction 1-2

6.2 Nanoparticle Synthesis 2
 6.2.1 Polymeric nanoparticle preparation
 6.2.2 Conjugation with chitosan
 6.2.3 Drug Loading
 6.2.4 Coating with tween 80

6.3 Characterization 2-3
 6.3.1 Fourier transform infrared (FTIR) spectroscopy measurement
 6.3.2 Dynamic light scattering (DLS) analysis of nanoparticle
6.3.3 Transmission electron microscopy (TEM) of nanoparticle

6.4 Animals
6.4.1 Cerebral ischemia induction (MCAO)
6.4.2 Experimental protocol

6.5 Biological parameters
6.5.1 Infarct analysis
6.5.2 Behavior study
6.5.2.1 Spontaneous Motor Activity (SMA)
6.5.2.2 Flexion Test (FT)
6.5.2.3 Grip Strength
6.5.3 Lipid peroxidation (LPO) assay
6.5.4 Reduced glutathione (GSH) assay
6.5.5 Glutathione-S-Transferase (GST) assay
6.5.6 Glutathione Reductase (GR) assay
6.5.7 Glutathione Peroxidase (GPx) assay
6.5.8 Catalase assay
6.5.9 Superoxide Dismutase (SOD) assay
6.5.10 Protein assay

6.6 Histopathology

6.7 Immunohistochemistry of NF-κB, COX-2 and NOS-2

6.8 Statistical analysis

6.9 Results
6.9.1 Fourier Transform Infrared Spectroscopy (FTIR) of nanoparticle
6.9.2 Dynamic Light Scattering (DLS) analysis of nanoparticle
6.9.3 Transmission Electron Microscopy (TEM) of nanoparticle
6.9.4 Effect of NR on TTC stain
6.9.5 Effect of NR on neurological deficit
6.9.5.1 The spontaneous motor activity (SMA)
6.9.5.2 Flexion Test (FT)
6.9.5.3 Grip strength
6.9.6 Decrease in Thiobarbituric Acid Reactive Substances (TBARS) level
6.9.7 Brain GSH and antioxidant restoration
6.9.8 Histological Findings
6.9.9 Immunohistochemical COX-2, iNOS and NF-κB expression
Chapter 7

Establishment of Cerebral Ischemia Model (MCAO) and its treatment with Quercetin and Nanoquercetin

7.1 Introduction 1-2
7.2 Nanoparticle Synthesis 2-3
 7.2.1 Polymeric nanoparticle preparation
 7.2.2 Conjugation with chitosan
 7.2.3 Drug Loading
 7.2.4 Coating with tween 80
7.3 Characterization 3
 7.3.1 Fourier transform infrared (FTIR) spectroscopy measurement
 7.3.2 Nuclear magnetic resonance (NMR)
 7.3.4 Transmission electron microscopy (TEM) of nanoparticle
7.4 Animals 3-4
 7.4.1 Cerebral ischemia induction
 7.4.2 Experimental protocol
7.5 Lipid peroxidation (LPO) assay 4
7.6 Behaviour study 4-5
 7.6.1 Spontaneous Motor Activity (SMA)
 7.6.2 Flexion Test (FT)
 7.6.3 Grip Strength
7.7 Histopathology 5
7.8 Immunohistochemistry of NF-kB, COX-2 and Caspase-3 5
7.9 Statistical analysis 5-6
7.10 Results 6-12
 7.10.1 Fourier Transform Infrared Spectroscopy (FTIR) of nanoparticle
 7.10.2 Dynamic Light Scattering (DLS) analysis of nanoparticle
 7.10.3 Transmission Electron Microscopy (TEM) of nanoparticle
 7.10.4 Decrease in Thiobarbituric Acid Reactive Substances (TBARS) level
 7.10.5 Effect of Q and NQ on neurological deficit
7.10.5.1 The spontaneous motor activity (SMA)
7.10.5.2 Flexion Test (FT)
7.10.5.3 Grip Strength
7.10.6 Histological Findings
7.10.7 Immunohistochemical expression of NF-kB and COX-2
7.10.8 Caspase-3 expression

Chapter 8

8 Conclusions 1-3
Publications
FIGURES

CHAPTER- 4

Figure 4.1- FTIR spectra of NIPAAM-AA and PAG coated NIPAAM nanoparticles

Figure 4.2- NMR spectra of nanoparticles. (A) NIPAAM-AA polymer, (B) PAG only, (C) NIPAAM-AA-PAG a conjugated polymer

Figure 4.3- DLS pattern of encapsulated quercetin nanoparticles

Figure 4.4- TEM analysis of encapsulated quercetin nanoparticles

Figure 4.5- In vitro release kinetics of quercetin from nanopolymers

Figure 4.6 Effect of quercetin (Q) and nanoquercetin (NQ_{L}, NQ_{H}) on serum markers, such as AST, ALT, ALP and LDH

Figure 4.7 The histopathological changes in liver sections in a CCl_{4}-mediated liver cirrhosis model and treatment with quercetin and nanoquercetin

Figure 4.8 The collagen fiber staining in a CCl_{4}-mediated liver cirrhosis model and treatment with quercetin and nanoquercetin

Figure 4.9 The effect of quercetin and nanoquercetin on NF-kB expression by immunohistochemistry in a CCl_{4}-mediated liver cirrhosis model

Figure 4.10 The effects of quercetin and nanoquercetin on NOS-2 expression by immunohistochemistry in a CCl_{4}-mediated liver cirrhosis model

CHAPTER- 5

Figure 5.1- FTIR spectra of NIPAAM-AA and PAG coated NIPAAM nanoparticles

Figure 5.2- NMR spectra of nanoparticles. (A) NIPAAM-AA polymer, (B) PAG only, (C) NIPAAM-AA-PAG, a conjugated polymer

Figure 5.3- DLS pattern of encapsulated TQ nanoparticles

Figure 5.4- TEM analysis of encapsulated TQ nanoparticles

Figure 5.5- In vitro release kinetics of thymoquinone from nanoparticles
Figure 5.6 Effect of thymoquinone (TQ) and nanothymoquinone (NTQ_L, NTQ_M, NTQ_H) on serum markers like ALP, AST, ALT and LDH

Figure 5.7 Histopathological findings in CCl_4 induced hepatotoxic model

Figure 5.8 COX-2 expression in CCl_4 induced hepatotoxic model

Figure 5.9 NF-kB expression in CCl_4 induced hepatotoxic Model

CHAPTER- 6

Figure 6.1- FTIR spectra of NIPAAM-VP-AA and chitosan coated NIPAAM nanoparticles

Figure 6.2- DLS pattern of the nanoparticles

Figure 6.3- TEM analysis of the nanoparticles

Figure 6.4 Effect of NR on brain infarct in a MCAO model

Figure 6.5 Effect of NR on behavioral deficits like SMA, FT and Grip Strength in a MCAO model

Figure 6.6 Effect of NR on various biochemical markers (LPO, GSH, GR, GST, GPx, SOD, CAT) in a MCAO model

Figure 6.7 Histopathological changes in the brain section in a MCAO model and its treatment with NR

Figure 6.8 Effect of NR on immunohistochemical expression of COX-2 in a MCAO model

Figure 6.9 Effect of NR on immunohistochemical expression of iNOS in a MCAO model

Figure 6.10 Effect of NR on immunohistochemical expression of NF-kB in a MCAO model

CHAPTER- 7

Figure 7.1- FTIR spectra of NIPAAM-VP-AA and chitosan coated NIPAAM nanoparticles

Figure 7.2- DLS pattern of the nanoparticles

Figure 7.3- TEM analysis of the nanoparticles

Figure 7.4 shows the effect of Q and NQ on LPO in a MCAO model
Figure 7.5 shows the effect of Q and NQ on behavioral deficits like SMA, FT and Grip Strength in a MCAO model.

Figure 7.6 shows the histopathological changes in the brain section in a MCAO model and its treatment with Q and NQ.

Figure 7.7 shows the effect of Q and NQ on immunohistochemical expression of NF-kB in a MCAO model.

Figure 7.8 shows the effect of Q and NQ on immunohistochemical expression of COX-2 in a MCAO model.

Figure 7.9 shows the effect of Q and NQ on caspase-3 expression in MCAO model.
ABBREVIATIONS

AA Acrylic Acid
ACA Anterior Cerebral Artery
ALP Alkaline Phosphatase
ALS Amyotrophic Lateral Sclerosis
ALT Alanine Transaminase
APS Ammonium Per Sulphate
ASGP-R Asialoglycoprotein Receptor
AST Aspartate aminotransferase
BBB Blood Brain Barrier
BCSFB Blood Cerebrospinal Fluid Barrier
BCRP Breast Cancer Resistance Protein
BSA Bovine Serum Albumin
CADASIL Cerebral Autosomal Dominant Arteriopathy with Sub-cortical Infarcts and Leukoencephalopathy
CAT Catalase
CCA Common Carotid Artery
CCD Charge-Coupled Device
CCl₃⁻ Trichloromethyl Radical
CCl₃OO' Trichloromethylperoxy Radical
CCl₄ Carbon tetrachloride
CDNB 1-chloro-2,4-dinitrobenzene
CMC Critical Micelle Concentration
COX Cyclooxygenase
CSF Cerebrospinal Fluid
DHTQ Dihydrothymoquinone
DLS Dynamic Light Scattering
DMSO Dimethyl sulfoxide
DTNB 1,2-dithio-bis-nitrobenzoic acid
ECA External Carotid Artery
ECM Extracellular Matrix
EDC-HCL 1-(3-dimethylaminopropyl)-3-ethylcarbodiimidehydrochloride
EDRF Endothelium-Derived Relaxation Factor
EDTA Ethylenediaminetetraacetic Acid
FAS Ferrous Ammonium Sulphate
FTIR Fourier Transform Infrared
FT Flexion Test
GPx Glutathione Peroxidase
GR Glutathione Reductase
GSH Reduced Glutathione
GSSG Oxidized Glutathione
GST Glutathione-S-Transferase
HSCs Hepatic Stellate Cells
ICA Internal Carotid Artery
ICP Intracranial Pressure
ICV Intra Cerebro Ventricular
IkBs Inhibitor of NF-kB Proteins
IKK IkB Kinase
iNOS Nitric Oxide Synthase
LACI Lacunar Circulation Infarct
LDL Low Density Lipoprotein
LPS Lipopolysaccharide
MCAO Middle Cerebral Artery Occlusion
MEOS Microsomal Ethanol Oxidizing System
MRP-1 Multidrug Resistance Protein-1
MS Multiple Sclerosis
NADPH Nicotinamide Adenine Dinucleotide Phosphate
NAPQI N-acetyl-p-benzoquinamine
NF-kB Nuclear factor-kB
NIPAAM N-isopropyl acrylamide
NMR Nuclear Magnetic Resonance
NO Nitric Oxide
NQ Nanoquercetin
NR Nanoriluzole
NTQ Nanothymoquinone
O$_2^-$ Superoxide Radical
OH$^-$ Hydroxyl Radical
ONOO$^-$ Peroxynitrite
PACI Partial Anterior Circulation Infarct
PAG p-aminophenyl-1-thio-β-D-galactopyranoside
PCA Posterior Cerebral Artery
PD Parkinson’s Disease
PEG Polyethylene Glycol
P-gp P-glycoprotein
PMS Post-Mitochondrial Supernatant
POCI Posterior Circulation Infarct
PUFA Polyunsaturated Fatty Acids
Q Quercetin
ROS Reactive Oxygen Species
SMA Spontaneous Motor Activity
SOD Superoxide Dismutase
SWNTs Single Walled Carbon Nanotubes
TACI Total Anterior Circulation Infarct
TBA Thiobarbituric Acid
TBARS Thiobarbituric Acid Reactive Substances
TBI Traumatic Brain Injury
TCA Trichloroacetic Acid
TEM Transmission Electron Microscopy
TIAs Transient Ischemic Attacks
TNF Tumour Necrosis Factor
TQ Thymoquinone
TTC 2,3,5-Triphenyltetrazolium chloride
VP N-vinyl-2-pyridone