<table>
<thead>
<tr>
<th>Chapter</th>
<th>Spectroscopic Techniques, Quantum Chemical Methods and a Review on Enamide Derivative Materials: Theoretical Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.1. Introduction</td>
</tr>
<tr>
<td></td>
<td>1.2. IR Spectroscopy</td>
</tr>
<tr>
<td></td>
<td>1.2.1. IR Vibration Spectra</td>
</tr>
<tr>
<td></td>
<td>1.2.2. IR Selection Rule</td>
</tr>
<tr>
<td></td>
<td>1.2.3. Fourier Transform IR Spectrometer</td>
</tr>
<tr>
<td></td>
<td>1.3. Raman Spectroscopy</td>
</tr>
<tr>
<td></td>
<td>1.3.1. FT- Raman Spectrometer</td>
</tr>
<tr>
<td></td>
<td>1.4. Biological Studies</td>
</tr>
<tr>
<td></td>
<td>1.4.1. Antibacterial activity study</td>
</tr>
<tr>
<td></td>
<td>1.4.2. Antifungal activity study</td>
</tr>
<tr>
<td></td>
<td>1.5. Quantum Chemical Calculations</td>
</tr>
<tr>
<td></td>
<td>1.5.1. Computational chemistry methods</td>
</tr>
<tr>
<td></td>
<td>1.5.2. Ab initio Methods</td>
</tr>
<tr>
<td></td>
<td>1.5.3. Ab initio Theory</td>
</tr>
<tr>
<td></td>
<td>1.5.4. Hartree – Fock Theory</td>
</tr>
<tr>
<td></td>
<td>1.5.5. The Hartree – Fock Equations</td>
</tr>
<tr>
<td></td>
<td>1.5.6. Self Consistent Field Method</td>
</tr>
<tr>
<td></td>
<td>1.6. Density functional theory</td>
</tr>
<tr>
<td></td>
<td>1.6.1. The Kohn- Sham approach</td>
</tr>
<tr>
<td></td>
<td>1.7. Basis set</td>
</tr>
<tr>
<td></td>
<td>1.7.1. Minimal basis sets</td>
</tr>
<tr>
<td></td>
<td>1.7.2. Split- valence basis sets</td>
</tr>
<tr>
<td></td>
<td>1.7.3. Polarised basis sets</td>
</tr>
<tr>
<td></td>
<td>1.7.4. Diffuse basis sets</td>
</tr>
<tr>
<td></td>
<td>1.7.5. High angular momentum basis sets</td>
</tr>
<tr>
<td></td>
<td>1.8. Vibrational energy distribution analysis</td>
</tr>
</tbody>
</table>

1 - 46
Chapter II
SPECTROSCOPIC (FT-IR, FT-RAMAN), FIRST ORDER HYPERPOLARIZABILITY, NBO AND HOMO-LUMO ANALYSIS OF (2E)-3-(2H-1,3-BENZODIOXOL-5-YL)-N-PHENYLPROP-2-ENAMIDE

1.1 Introduction 47
2.2 Material and methods 48
 2.2.1 Synthesis 48
 2.2.2 Experimental details 48
 2.2.3 Computational details 49
2.3 Results and discussion 49
 2.3.1 Molecular geometry 50
 2.3.2 Vibrational analysis 52
 2.3.3 Hyperpolarizability calculations 53
 2.3.4 Frontier molecular orbital (FMO) analysis 54
 2.3.5 NBO analysis 55
 2.3.6 Molecular electrostatic potential 56
 2.3.7 Thermodynamic properties 57
 2.3.8 Antimicrobial activity 58
 2.3.9 Molecular docking 59
2.4 Conclusion

Chapter III
MOLECULAR DOCKING, SPECTROSCOPIC, FIRST ORDER HYPERPOLARIZABILITY, NBO AND HOMO-LUMO ANALYSIS OF (2E)-3-(2H-1,3-BENZODIOXOL-5-YL)-N-(4-CHLOROPHENYL) PROP-2-ENAMIDE

3.1 Introduction 87
3.2 Material and methods 88
 3.2.1 Synthesis 88
 3.2.2 Experimental details 89
3.2.3 Computational details 89
3.3 Results and discussion 89
3.3.1 Molecular geometry 89
3.3.2 Vibrational analysis 90
3.3.3 HOMO – LUMO energy 92
3.3.4 Molecular electrostatic potentials (MEP) 93
3.3.5 Hyperpolarizability calculations 94
3.3.6 Donor-acceptor interactions 96
3.3.7 Thermodynamic properties 97
3.3.8 Antimicrobial activity 98
3.3.9 Molecular docking 99
3.4 Conclusion 99

Chapter IV SYNTHEIS, SPECTROSCOPIC (FT-IR, FT-RAMAN), FIRST ORDER HYPERPOLARIZABILITY AND HOMO-LUMO ANALYSIS OF (2E)-N-PHENYL-3-(4H-PYRAN-4-YL)PROP-2-ENAMIDE

4.1 Introduction 129
4.2 Material and methods 129
4.2.1 Synthesis 129
4.2.2 Experimental details 129
4.2.3 Computational details 129
4.3 Results and discussion 130
4.3.1 Molecular geometry 130
4.3.2 Vibrational analysis 131
4.3.3 Hyperpolarizability calculations 133
4.3.4 Frontier molecular orbital (FMO) analysis 135
4.3.5 Molecular electrostatic potentials (MEP) 136
4.3.6 Thermodynamic properties 137
4.3.7 NBO analysis 138
4.3.8 Antimicrobial activity 139
4.3.9 Molecular docking 139
4.4 Conclusion 140
Chapter V Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), NLO, NBO, HOMO-LUMO, fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide

5.1. Introduction 170
5.2. Material and methods 171
 5.2.1 Synthesis 171
 5.2.2 Experimental details 171
 5.2.3 Computational details 171
5.3. Results and discussion 172
 5.3.1 Molecular geometry 172
 5.3.2 Vibrational analysis 173
 5.3.3 Hyperpolarizability calculations 175
 5.3.4 HOMO – LUMO energy 177
 5.3.5 Molecular electrostatic potentials (MEP) 178
 5.3.6 NBO analysis 179
 5.3.7 Fukui function 180
 5.3.8 Thermo dynamical properties 182
 5.3.9 Antimicrobial activity 183
 5.3.10 Molecular docking study 184
5.4 Conclusion

Chapter VI Summary and Conclusion 213 - 215

Publications
LIST OF FIGURES

Chapter I

1.1. Block Diagram of FTIR Spectrometer
1.2. A block diagram of Raman spectrometer

Chapter II

2.1. The scheme of the synthesis of 2BNP2E
2.2. The theoretical optimized geometric structure with atoms numbering of 2BNP2E
2.3. Experimental and theoretical FT-IR spectra of 2BNP2E
2.4. Experimental and theoretical FT-Raman spectra of 2BNP2E
2.5. Highest occupied and lowest unoccupied molecular orbital of 2BNP2E obtain with B3LYP/6-311++G(d,p) method
2.6. Molecular electrostatic potential of 2BNP2E calculated at B3LYP/6-311++G(d,p) basis set.
2.7. The contour map of electrostatic potential of the total density of 2BNP2E
2.8. Correlation graphic of heat capacity, entropy, enthalpy and temperature for 2BNP2E
2.9. Antibacterial activity and antifungal activity of title molecule
2.10. Docking and Hydrogen bond interactions 2BNP2E with chain A of 3F03 protein structure
2.11. Docking and Hydrogen bond interactions 2BNP2E with chain A of 4HOE protein structure
2.13. Docking and Hydrogen bond interactions 2BNP2E with chain A of 1V1P protein structure.

Chapter III

3.1. The scheme of the synthesis of 3B5NCE
3.2. Optimized geometric structure with atoms numbering of 3B5NCE
3.3. FT-IR spectra of 3B5NCE (Experimental, B3LYP/6-311++G(d,p))
3.4. FT-Raman spectra of 3B5NCE (Experimental, B3LYP/6-311++G(d,p))
3.5. Atomic orbital HOMO – LUMO composition of the frontier molecular orbital for 3B5NCE
3.6. Total electron density mapped with molecular electrostatic potential surface of 3B5NCE
3.7. The contour map of electrostatic potential of the total density of 3B5NCE
3.8. Correlation plot of thermodynamic properties at different temperature of the title compound.
3.9. Antibacterial activity and antifungal activity of title molecule
3.10. Docking and Hydrogen bond interactions 3B5NCE with chain A of 3F03 protein structure
3.11. Docking and Hydrogen bond interactions 3B5NCE with chain A of 4HOE protein structure

Chapter IV

4.1. The scheme of the synthesis of P3P2E
4.2. The theoretical optimized geometric structure with atoms numbering of P3P2E
4.3. Experimental and theoretical FT-IR spectra of P3P2E
4.4. Experimental and theoretical FT-Raman spectra of P3P2E
4.5. Highest occupied and lowest unoccupied molecular orbital of P3P2E obtain with B3LYP/6-311++G(d,p) method
4.6. Molecular electrostatic potential of P3P2E calculated at B3LYP/6-311++G(d,p) basis set.
4.7. Correlation graphic of heat capacity, entropy, enthalpy and temperature for P3P2E
4.8. Antibacterial activity and antifungal activity of title molecule
4.9. Docking and Hydrogen bond interactions P3P2E with chain A of 3F03 protein structure.
4.10. Docking and Hydrogen bond interactions P3P2E with chain A of 4HOE protein structure.

4.11. Docking and Hydrogen bond interactions P3P2E with chain A of 3EQA protein structure.

Chapter V

5.1. The scheme of the synthesis of 2INP

5.2. Optimized geometric structure with atoms numbering of 2INP

5.3. FT-IR spectra of 2INP (Experimental, B3LYP/6-311++G(d,p))

5.4. FT-Raman spectra of 2INP (Experimental, B3LYP/6-311++G(d,p))

5.5. Atomic orbital HOMO – LUMO composition of the frontier molecular orbital for 2INP

5.6. Total electron density mapped with molecular electrostatic potential surface of 2INP

5.7. The contour map of electrostatic potential of the total density of 2INP

5.8. Correlation plot of thermodynamic properties at different temperature of the title compound.

5.10. Docking and Hydrogen bond interactions 2INP with chain A of 3F03 protein structure

5.11. Docking and Hydrogen bond interactions 2INP with chain A of 4HOE protein structure.

5.13. Docking and Hydrogen bond interactions 2INP with chain A of 1V1P protein structure.
LIST OF TABLES

Chapter I

1.1. Types of IR region

Chapter II

2.1. Optimized geometrical parameters of (2E)-3-(2H-1,3-benzodioxol-5-yl)-N-phenylprop-2-enamide obtain by B3LYP/6-311++G(d,p) basis set.

2.2. Calculated vibrational frequencies (cm\(^{-1}\)) assignments of 2BNP2E based on B3LYP/6-311++G(d,p) basis set.

2.3. The values of calculated dipole moment \(\mu\) (D), polarizability \(\alpha_0\), first order hyperpolarizability \(\beta_{tot}\) components of 2BNP2E

2.4. Calculated energy values of title compound by B3LYP/6-311++G(d,p) method.

2.5. Second order perturbation theory analysis of Fock matrix in NBO basis for 2BNP2E.

2.6. Temperature dependence of thermodynamic properties of 2BNP2E at B3LYP /6-311++G(d,P)

2.7. Antibacterial and antifungal activity of 2BNP2E

2.8. Hydrogen bonding and molecular docking with antimicrobial protein targets

Chapter III

3.1. Optimized geometrical parameters of (2E)-3-(2H-1,3-benzodioxol-5-yl)-N-(4-chlorophenyl)prop-2-enamide (3B5NCE) obtain by B3LYP/6-311++G(d,p) basis set.

3.2. Calculated vibrational frequencies (cm\(^{-1}\)) assignments of 3B5NCE based on B3LYP/6-311++G(d,p) basis set.

3.3. Calculated energy values of title compound by B3LYP/6-311++G(d,p) method.

3.4. Temperature dependence of thermodynamic properties of 3B5NCE at B3LYP /6-311++G(d,P)
3.5. The values of calculated dipole moment μ (D), polarizability (α_0), first order hyperpolarizability (β_{tot}) components of 3B5NCE

3.6. Temperature dependence of thermodynamic properties of 3B5NCE at B3LYP /6-311++G(d,p)

3.7. Antimicrobial activity of 3B5NCE

3.8. Hydrogen bonding and molecular docking with antimicrobial protein targets

3.9. Hydrogen bonding and molecular docking with antimicrobial protein targets

Chapter IV

4.1. Optimized geometrical parameters of (2E)-N-phenyl-3-(4H-pyran-4-yl)Prop-2-enamide obtain by B3LYP/6-311++G(d,p) basis set.

4.2. Calculated vibrational frequencies (cm$^{-1}$) assignments of P3P2E based on B3LYP/6-311++G(d,p) basis set.

4.3. The values of calculated dipole moment μ (D), polarizability (α_0), first order hyperpolarizability (β_{tot}) components of P3P2E

4.4. Calculated energy values of title compound by B3LYP/6-311++G(d,p) method.

4.5. Temperature dependence of thermodynamic properties of P3P2E at B3LYP /6-311++G(d,p).

4.6. Second order perturbation theory analysis of Fock matrix in NBO basis for P3P2E.

4.7. Antimicrobial activity of P3P2E

4.8. Hydrogen bonding and molecular docking with antimicrobial protein targets

4.9. Hydrogen bonding and molecular docking with antimicrobial protein targets

Chapter V

5.1. Optimized geometrical parameters of (2E)-3-(1H-indol-2-yl)-N-phenylprop-2-enamide (2INP) obtain by B3LYP/6-311++G(d,p) basis set.

5.2. Calculated vibrational frequencies (cm$^{-1}$) assignments of 2INP based on B3LYP/6-311++G(d,p) basis set.
5.3. The values of calculated dipole moment μ (D), polarizability (α_0), first order hyperpolarizability (β_{tot}) components of 2INP

5.4. Calculated energy values of title compound by B3LYP/6-311++G(d,p) method.

5.5. Second order perturbation theory analysis of Fock matrix in NBO basis for 2INP

5.6. Condensed Fukui function f_i and new descriptor $(s_f)_i$ for 2INP

5.7. Temperature dependence of thermodynamic properties of 2INP at B3LYP /6-311++G(d,p)

5.8. Antimicrobial activity of 2INP.

5.9. Hydrogen bonding and molecular docking with antimicrobial protein targets