ABSTRACT

With the tremendous increase in the availability of the information Web, various well-informed services have been originated to be useful for the clients to access specific entropy from the network. But, the present network overhauls provided are not adequate to meet the necessities of several network clients, more specific with the erect of the Semantic Network. Thus, more research required to formulate fresh well-informed methods and overhauls for network clients. To accomplish this, network utilization excavation is a better alternative to supply amended network services, especially on the Semantic Network.

Network utilization excavation, also called as network log excavation, primarily intends for extracting attractive and recurrent client access blue prints from network surfing information which are preserved in network host logs, gateway host logs or client logs. In this dissertation, concentration is made to tackle novel web mining approaches to mine web usage data in a more better manner and in effect. In this research, the initial stages are involved with providing suggestions are made to use three network utilization excavation procedures for excavation consecutive access blue prints and affiliation access blue prints are as follow:

• Conditional Sequence Mining Access (CSMA): A potential method Web Access Pattern Tree mining for successive chain access patterns;
• Temporal Conditional Sequence Mining Access (TCSMA): A potential strategy to mine recurrent successive chain access patterns;
• Formal Based Concept Analysis (FBCA): A potential strategy to mine relation oriented access patterns.

An approach depending on the successive chain access patterns is suggested for web suggestion system called as CNAGTS (Consecutive Network access Grounded Testimonial System). Another suggestion system known as ANGTS (Affiliation Network Access-grounded Testimonial System) has also been advised grounded on affiliation access blue prints. ANGTS is mainly developed to be utilitarian for the problem of the rating of the character of the extracted FBCA relation oriented access patterns and conventional relation oriented access pattern.

In this thesis, initially motivation of the present research work is provided. The similar approaches on network utilization excavation are discoursed. Then, the advised network utilization excavation methods for consecutive access blue prints and affiliation access blue prints are retrospect. Performance of the advised procedures is also rendered. Discourse is also made on the CNAGTS and ANGTS systems and the rating of the consecutive and affiliation access blue prints.