TABLE OF CONTENTS

Chapter-1

Introduction

- **1.1 Polymers**
 - 1.1.1 Molecular Structure of Polymers 2
 - 1.1.2 Aliphatic and Aromatic polymers 4
 - 1.1.3 Polypropylene (PP) 4
 - 1.1.4 Polycarbonate (PC) 5
 - 1.1.5 Polyethylene terephthalate (PET) 5

- **1.2 Basic Ion Bombardment Processes in Solids**
 - 1.2.1 General Phenomena 6
 - 1.2.2 Interaction Processes 6
 - 1.2.3 Ion Ranges 9

- **1.3 Effect of Ion beam interaction on Polymer** 10

- **1.4 Ion Irradiation at Oblique Incidence** 11

- **1.5 Ion Beam Sputtering (IBS)** 13

- **1.6 Sigmund Theory of Sputtering** 14

- **1.7 Bradley and Harper Theory** 16

- **1.8 Physical Mechanisms Involved in Ion Beam Sputtering** 20

- **1.9 Factors Influencing Ion Beam Sputtering** 21
 - 1.9.1 Dependence on Ion Fluence 21
 - 1.9.2 Dependence on Angle of Incidence 22
 - 1.9.3 Dependence on Charge State of Incident Ion 23
 - 1.9.4 Dependence on Ion Energy 23
 - 1.9.5 Dependence on Type of substrates 24

- **1.10 Ion Beam Sputtering Induced Surface Morphologies** 24
 - 1.10.1 Dot and Hole Morphology 25
 - 1.10.2 Anisotropic Patterns:Nono-ripples 26
 - 1.10.3 Smooth Surfaces 26

- **1.11 Justification and Objectives of Present Study** 29

- **1.12 Layout of chapters** 31

References

Page Nos.

- 1-32
- 2
- 4
- 4
- 5
- 5
- 6
- 6
- 6
- 9
- 10
- 11
- 13
- 14
- 16
- 20
- 21
- 22
- 23
- 23
- 24
- 24
- 25
- 26
- 26
- 29
- 31
- 33
CHAPTER-2
Experimental Details 39-57
2.1 General 39
2.2 Polymers Used in Present Study 39
 2.2.1 Polypropylene (PP) 39
 2.2.2 Polycarbonate (PC) 40
 2.2.3 Polycarbonate (PC) 40
2.3 Ion Implantation Machine 41
2.4 Sample Preparation 43
 2.4.1 Polypropylene (PP) 43
 2.4.2 Polycarbonate (PC) 43
 2.4.3 Polycarbonate (PC) 44
2.5 Characterization Techniques 44
 2.5.1 Atomic Force Microscopy (AFM) 44
 2.5.2 Raman Spectroscopy 47
 2.5.3 Rutherford Backscattering Spectroscopy (RBS) 49
 2.5.4 UV-Visible Spectroscopy 53
References 58
Chapter 3 61-156
Results and Discussions
3.1 General 61
3.2 Effect of Argon ion irradiation on Polypropylene 62
 3.2.1 Estimation of Range and Sputtering Yield 62
 3.2.2 Atomic Force Microscopy 64
 3.2.2.1 Topographical Analysis of PP Surfaces 64
 3.2.2.2 Root Mean square (RMS) Roughness 73
 3.2.2.3 Morphological analysis of 50 KeV Ar⁺ irradiated
 PP surfaces 74
 3.2.3 Rama spectroscopy 76
 3.2.3.1 Chemical and structural Analysis 76
 3.2.3.2 Evaluation of Disordered Layers 80
 3.2.4 Rutherford Backscattering Spectroscopy 82
 3.2.4.1 Structural Modification 82
 3.2.4.2 Backscattered Energies 83
 3.2.4.3 Elemental Identification in the Target 84
 3.2.4.4 Calculation of Implanted Fluence 84
3.2.4.5 Calculation of Atomic Concentration 84
3.2.4.6 Projected Range of Argon Ions 85
3.2.5 UV-Visible Spectroscopy 87
3.2.5.1 UV-Visible Transmission Spectroscopy 87
3.2.5.2 Specular Reflectance 90

3.3 Effect of Argon ion irradiation on Polycarbonate 97
3.3.1 Estimation of Range and Sputtering Yield 98
3.3.2 Atomic Force Microscopy 99
3.3.2.1 Topographical Analysis of PP Surfaces 99
3.3.3 Raman Spectroscopy 106
3.3.3.1 Chemical and structural Analysis 106
3.3.3.2 Evaluation of Disordered Layers 110
3.3.4 Rutherford Backscattering Spectroscopy 111
3.3.4.1 Structural Modification 111
3.3.4.2 Elemental Identification in the Target 113
3.3.4.3 Calculation of Implanted Fluence 113
3.3.4.4 Projected Range of Argon Ions 113
3.3.5 UV-Visible Spectroscopy 114
3.3.5.1 UV-Visible Transmission Spectroscopy 114
3.3.5.2 Specular Reflectance 117

3.4 Effect of Argon ion irradiation on Polyethylene terephthalate 123
3.4.1 Estimation of Range and Sputtering Yield 123
3.4.2 Atomic Force Microscopy 125
3.4.2.1 Topographical Analysis of PET Surfaces 125
3.4.2.2 Morphological analysis of 50 KeV Ar⁺ irradiated PP surfaces 130
3.4.2.3 Root Mean square (RMS) Roughness 131
3.4.3 Raman spectroscopy 132
3.4.3.1 Chemical and structural Analysis 132
3.4.4 UV-Visible Spectroscopy 134
3.4.4.1 UV-Visible Transmission Spectroscopy 134
3.4.4.2 Specular Reflectance 136

3.5 Investigation of Underlying Mechanism 143
3.5.1 Investigation of Bradley-Harper (BH) coefficients for PP 143
3.5.1.1 Elucidation of Surface relaxation mechanism 144
3.5.2 Investigation of Bradley-Harper (BH) coefficients for PC 147
3.5.2.1 Elucidation of Surface relaxation mechanism 148
3.5.3 Investigation of Bradley-Harper (BH) coefficients for PET 150
3.6 Comparison between the effects of oblique argon ion irradiation on PP, PC and PET polymers 151
References 153

Chapter-4 157-168
Summary, Conclusions and Scope of Future Work
4.1 General 157
4.2 Summary 157
4.3 Conclusions 164
4.4 Scope of Future Work 167
References 168
List of Publications