I hereby declare that the thesis titled ‘General Physical Characteristics of γ-ray Emitting Beamed AGNs in Fermi Era’ is an authentic record of the research work carried out by me under the supervision of Prof. C. S. Stalin, IIA and Dr. C. D. Ravikumar, Department of Physics, University of Calicut. No part of this work has formed the basis for award of any other degree or diploma in any university or institution.

Vaidehi Sharan Paliya
The research work presented in this thesis is aimed to provide a detailed understanding of the radiative processes powering the jets of the blazars, a class of AGNs with jet pointed towards the line of sight to the observer. Another important aim of this work is to study the multi-frequency properties of a new class of γ-ray emitting narrow-line Seyfert 1 (γ-NLSy1) galaxies using various observational tools and to compare them with that known from powerful blazars.

The goal of understanding the physical characteristics of blazars is achieved by studying the broadband flux variability and spectral energy distribution (SED) modeling of a carefully selected sample of blazars. The aim of the broadband variability study is to provide a general physical scenario, which allows one to put the observed variation from blazars across several decades of frequencies in a coherent context. Extremely fast hr scale flux variations are observed from all the sources studied here, including nearby BL Lac object Mrk 421 ($z = 0.03$) which showed minute scale hard X-ray (3–79 keV) flux variability during its 2013 April X-ray outburst. Moreover, by adopting a SED modeling approach, attempts are made to understand the causes of high amplitude γ-ray flux variations observed from these objects. To do this, a simple one zone leptonic emission model was also developed during the course of the thesis. The main reason of the 2014 April and 2015 June γ-ray outbursts of 3C 279 ($z = 0.536$) and 2011 December γ-ray flare of distant blazar S5 0836+71 ($z = 2.17$) is found to be due to sudden acceleration of the jet. On the other hand, minute scale variability seen from Mrk 421 is explained on the basis of magnetic energy dissipation and reconnection events.

The multi-wavelength observations of 3C 279 revealed that a single zone leptonic emission model successfully reproduces the γ-ray flares of 2014 April and 2015 June, however, it fails to explain the uncorrelated flux variations and a hard γ-ray spectrum seen during 2013 December event. A two zone leptonic emission model is used to match the observations. All these observations hint for the presence of a
variety of the radiative processes working in the 3C 279 jet (and possibly in other sources as well) and their dominance over each other, as seen during different high activity periods.

The launch of the *Fermi* Gamma-ray space telescope in the year 2008 led to the first detection of γ-ray emission with high confidence from about half-a-dozen radio-loud NLSy1 galaxies. This discovery clearly indicates the presence of relativistic jets in these sources similar to that of blazars. With the motivation to understand the nature of γ-NLSy1 galaxies vis-a-vis blazars, few diagnostic tests are carried out, namely, intranight optical variability (INOV), γ-ray spectral properties, and broadband SED modeling. It is found that: (1) these sources show large amplitude (>3%) INOV with a duty cycle of about 80%, (2) their γ-ray spectra exhibit a significant curvature, and (3) their broadband SEDs have the typical double hump structure and the high energy hump can be explained due to external Compton process. Thus, based on the observations covering a wide range of the electromagnetic spectrum, it can be concluded that γ-NLSy1 galaxies have all the properties similar to blazars and could well be the low black hole mass counterparts of flat spectrum radio quasars.
Acknowledgements

I thank my supervisor Prof. C. S. Stalin for a continuous guidance, support, and encouragement and also my co-supervisor Dr. C. D. Ravikumar for his guidance and assistance during the course of the thesis. I am also grateful to Dr. Sunder Sahayanathan of Astrophysical Sciences Division, BARC, Mumbai, for teaching the basics of radiative processes and pointing out the shortcomings during various stages of the work. I am thankful to the Director, Indian Institute of Astrophysics (IIA) for providing all the basic research requirements in the form of computational, library, and other resources. Board of Graduate Studies at IIA is gratefully acknowledged for facilitating the registration process and all subsequent formalities. I acknowledge the support received from the observing staffs at the Indian Astronomical Observatory, Hanle and CREST and the staff members at the Vainu Bappu Observatory, Kavalur, for taking care of all the necessary requirements, during the period of thesis writing. I thank my colleague Avinash Surendran at IIA for various lengthy discussion sessions that worked as a stress reliever during tough times. Needless to say, I am indebted to my beloved family for their continuous support and strength, without which this work was simply not possible.

This research has made use of data, software and/or web tools obtained from NASAs High Energy Astrophysics Science Archive Research Center (HEASARC). Part of this work is based on archival data, software, or online services provided by the ASI Science Data Center (ASDC). This research has made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASDC, Italy. This research has also made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (Caltech, USA). Steward Observatory spectropolarimetric monitoring project is supported by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, and NNX12AO93G. This research has made use of up-to-date SMARTS optical/near-infrared light curves. This research has made use of data from the OVRO 40-m monitoring program (Richards et al., 2011) which is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911. The CRTS survey is supported by the U.S. National Science Foundation under grants AST-0909182 and AST-1313422. This research has made use of the Palermo BAT Catalogue and database operated at INAF – IASF Palermo.
Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.

Use of the *Hydra* cluster at Indian Institute of Astrophysics is acknowledged.
List of Publications

Refereed Publications:

1. *Broadband Observations of the Gamma-Ray Emitting Narrow Line Seyfert 1 Galaxy SBS 0846+513*

2. *A Hard Gamma-ray Flare from 3C 279 in 2013 December*

3. *Violent Hard X-ray Variability of Mrk 421 Observed by NuSTAR in 2013 April*

4. *Fermi-Large Area Telescope Observations of the Exceptional Gamma-ray Flare from 3C 279 in 2015 June*

5. *The High Redshift Blazar S5 0836+71: A Broadband Study*

6. *Awakening of the High Redshift Blazar CGRaBS J0809+5341*

7. *Multi-Wavelength Observations of 3C 279 during the Extremely Bright Gamma-ray Flare in 2014 March-April*
8. *Fermi Monitoring of Radio-loud Narrow Line Seyfert 1 Galaxies*

9. *The Peculiar Radio-loud Narrow Line Seyfert 1 Galaxy 1H 0323+342*

11. *Intranight Optical Variability of γ-ray Loud Narrow-Line Seyfert 1 Galaxies*

Refereed Conference Proceedings:

1. *Lepto–Hadronic Origin of γ-ray Outbursts of 3C 279*
 Paliya, Vaidehi S., Chris Diltz, Markus Böttcher, C. S. Stalin, and David Buckley, Refereed proceedings of the RETCO-II meeting held at ARIES, Nainital, India from 2015 May 6–8, published in the ASI Conference Series. Edited by I. Chattopadhyay, A. Nandi, S. Das, and S. Mandal, 2015, ASInC, 12, 113
Contents

Certificate i

Declaration of Authorship ii

Abstract iii

Acknowledgements v

List of Publications vii

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Historical Background 1

1.2 AGN Structure 2

1.2.1 The accretion disk 3

1.2.2 Broad line region 4

1.2.3 dusty torus 4

1.2.4 Narrow line region 4

1.2.5 The relativistic jets 5

1.3 AGN Unification 6

1.3.1 Types of AGN 6

1.3.2 AGN Unification 7

1.4 Blazars 8

1.4.1 NLSv1 Galaxies 12

1.4.2 Beamed AGN 12

1.5 Beaming Effects 12

1.6 Motivation 13
2 Multi-wavelength Observations

2.1 Data reduction

2.1.1 Fermi

2.1.1.1 LAT

2.1.1.2 LAT data reduction

2.1.2 NuSTAR

2.1.2.1 NuSTAR data reduction

2.1.3 Swift

2.1.3.1 Swift-BAT

2.1.3.2 Swift-XRT

2.1.3.3 Swift-UVOT

2.1.4 Himalayan Chandra Telescope

2.1.5 Devasthal Telescope

2.1.5.1 Optical data reduction

2.1.6 Archival data

2.1.6.1 SMARTS

2.1.6.2 Steward observatory

2.1.6.3 Ovens observatory

2.2 SED modeling

2.2.1 Emission region

2.2.2 Energy densities

2.2.2.1 Accretion disk

2.2.2.2 X-ray corona

2.2.2.3 BLR radiation

2.2.2.4 IR-torus

2.2.2.5 Magnetic field

2.2.3 Synchrotron radiation

2.2.3.1 Self absorption

2.2.4 SSC radiation

2.2.5 EC radiation

2.2.6 Input parameters

3 Blazars

3.1 Blazar sample

3.2 S5 0836+71

3.2.1 Multi-band temporal variability

3.2.2 Spectral analysis

3.2.3 SED modeling

3.2.4 Summary

3.3 BZQ J0809+5341

3.3.1 Black hole mass and disk luminosity

3.3.2 Average \(\gamma \)-ray properties

3.3.3 \(\gamma \)-ray variability
CONTENTS

3.3.4 Optical observations ... 57
3.3.5 Spectral analysis ... 57
3.3.6 SED modeling .. 59
3.3.7 Summary .. 63

3.4 3C 279 ... 64
3.4.1 2013 December flare .. 65
3.4.2 2014 April flare ... 73
3.4.3 2015 June flare ... 85
3.4.4 Summary .. 93

3.5 Mrk 421 ... 94
3.5.1 Mrk 421: X-ray temporal analysis 95
3.5.2 Mrk 421: X-ray spectral analysis 100
3.5.3 Mrk 421: constrained parameters 102
3.5.4 Mrk 421: Summary 103

3.6 Summary of the chapter .. 103

4 Narrow Line Seyfert 1 Galaxies 106
4.1 Intra-night optical variability 107
4.2 SED of γ-NLSy1 galaxies 113
 4.2.1 1H 0323+342 ... 114
 4.2.2 PKS 1502+036 ... 118
 4.2.3 PKS 2004−447 ... 120
4.3 Gamma-ray Analysis of γ-NLSy1 galaxies 121
 4.3.1 Long term γ-ray variability 121
 4.3.2 Short term γ-ray variability 124
 4.3.3 γ-ray spectral shape 126
 4.3.4 γ-ray spectral variations 128
4.4 Summary .. 132
 4.4.1 γ-NLSy1 galaxies: INOV 132
 4.4.2 γ-NLSy1 galaxies: SED modeling 132
 4.4.3 γ-NLSy1 galaxies: γ-ray flux variations 132
 4.4.4 γ-NLSy1 galaxies: γ-ray spectral shape 133
 4.4.5 γ-NLSy1 galaxies: γ-ray luminosities and spectral indices 133

5 Conclusions and Future Prospects 135
5.1 Variability studies ... 136
5.2 Radiative mechanism studies 138
5.3 Future prospects ... 140

Bibliography .. 141
List of Figures

1.1 The standard picture of AGN model ... 5
1.2 AGN unification ... 9
1.3 SED of blazars .. 10

2.1 Schematic of AGN components ... 29
2.2 Energy density variations ... 31

3.1 S5 0836+71: Multi-frequency light curves .. 40
3.2 S5 0836+71: Fine binned LAT light curves .. 42
3.3 S5 0836+71: Flare profile fitting ... 43
3.4 S5 0836+71: NuSTAR light curves ... 43
3.5 S5 0836+71: γ-ray flux vs. photon index ... 45
3.6 S5 0836+71: Residual of power law model fitting 46
3.7 S5 0836+71: Joint XRT and NuSTAR fitting 47
3.8 S5 0836+71: modeled SED and energy densities 49
3.9 J0809+5341: optical images .. 54
3.10 J0809+5341: SDSS spectrum fitting .. 55
3.11 J0809+5341: γ-ray light curve .. 57
3.12 J0809+5341: Joint XRT-NuSTAR fitting ... 59
3.13 J0809+5341: Modeled SED .. 60
3.14 3C 279: Weekly binned γ-ray light curve 65
3.15 3C 279: 2013 Dec MW light curves ... 66
3.16 3C 279: 2013 Dec LAT light curves ... 67
3.17 3C 279: 2013 Dec SED ... 69
3.18 3C 279: 2013 Dec low activity leptonic modeling 70
3.19 3C 279: 2013 Dec two zone modeling .. 72
3.20 3C 279: 2014 Apr MW light curves ... 74
3.21 3C 279: 2014 Apr LAT light curves ... 75
3.22 3C 279: 2014 Apr flare fitting .. 77
3.23 3C 279: 2014 Dec γ-ray SED ... 78
3.24 3C 279: 2014 Apr broadband SED modeling 80
3.25 3C 279: 2014 Apr daily binned SED .. 83
3.26 3C 279: 2014 Apr bulk Lorentz factor variations 84
3.27 3C 279: 2015 Jun light curves ... 86
3.28 3C 279: 2015 Jun flare fitting ... 87
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.29</td>
<td>3C 279: 2015 Jun energy dependent light curves</td>
<td>88</td>
</tr>
<tr>
<td>3.30</td>
<td>3C 279: 2015 Jun spectral analysis</td>
<td>89</td>
</tr>
<tr>
<td>3.31</td>
<td>3C 279: 2015 Jun SED modeling</td>
<td>90</td>
</tr>
<tr>
<td>3.32</td>
<td>3C 279: All SED</td>
<td>93</td>
</tr>
<tr>
<td>3.33</td>
<td>Mrk 421: Overall NuSTAR light curve</td>
<td>96</td>
</tr>
<tr>
<td>3.34</td>
<td>Mrk 421: five minute binned NuSTAR light curves</td>
<td>97</td>
</tr>
<tr>
<td>3.35</td>
<td>Mrk 421: five minute binned Swift-XRT light curves</td>
<td>98</td>
</tr>
<tr>
<td>3.36</td>
<td>Mrk 421: Fine binned NuSTAR light curves</td>
<td>98</td>
</tr>
<tr>
<td>3.37</td>
<td>Mrk 421: Spectral behavior</td>
<td>101</td>
</tr>
<tr>
<td>4.1</td>
<td>Intra-night light curves of 1H 0323+342</td>
<td>109</td>
</tr>
<tr>
<td>4.2</td>
<td>Intra-night light curves of SBS 0846+513</td>
<td>110</td>
</tr>
<tr>
<td>4.3</td>
<td>Intra-night light curves of PMN J0948+0022</td>
<td>111</td>
</tr>
<tr>
<td>4.4</td>
<td>Intra-night light curves of PKS 1502+036</td>
<td>111</td>
</tr>
<tr>
<td>4.5</td>
<td>1H 0323+342: Multi-frequency light curves</td>
<td>115</td>
</tr>
<tr>
<td>4.6</td>
<td>1H 0323+342: Modeled SED</td>
<td>115</td>
</tr>
<tr>
<td>4.7</td>
<td>1H 0323+342: Energy density variations</td>
<td>117</td>
</tr>
<tr>
<td>4.8</td>
<td>PKS 1502+036 and PKS 2004–447: Multi-band light curves</td>
<td>118</td>
</tr>
<tr>
<td>4.9</td>
<td>PKS 1502+036 and PKS 2004–447: Modeled SEDs</td>
<td>119</td>
</tr>
<tr>
<td>4.10</td>
<td>PKS 1502+036 and PKS 2004–447: Comparison with blazars</td>
<td>121</td>
</tr>
<tr>
<td>4.11</td>
<td>NLSy1 galaxies: long term γ-ray variations</td>
<td>122</td>
</tr>
<tr>
<td>4.12</td>
<td>NLSy1 galaxies: 6 hr binned γ-ray light curve of 1H 0323+342</td>
<td>124</td>
</tr>
<tr>
<td>4.13</td>
<td>NLSy1 galaxies: average γ-ray spectrum</td>
<td>127</td>
</tr>
<tr>
<td>4.14</td>
<td>NLSy1 galaxies: γ-ray spectra of 1H 0323+342 and SBS 0846+513</td>
<td>129</td>
</tr>
<tr>
<td>4.15</td>
<td>NLSy1 galaxies: γ-ray spectrum of PMN J0948+0022</td>
<td>130</td>
</tr>
<tr>
<td>4.16</td>
<td>NLSy1 galaxies: Photon index vs. flux</td>
<td>131</td>
</tr>
<tr>
<td>4.17</td>
<td>NLSy1 galaxies: L_{γ} vs. photon index</td>
<td>134</td>
</tr>
</tbody>
</table>
List of Tables

3.1 Sample of blazars ... 39
3.2 S5 0836+71: $F_{\nu,m}$ 41
3.3 S5 0836+71: Flare profile fitting parameters 43
3.4 S5 0836+71: γ-ray spectral analysis 44
3.5 S5 0836+71: X-ray spectral fitting 45
3.6 S5 0836+71: Summary of the SED parameters 48
3.7 J0809+5341: Average γ-ray analysis 56
3.8 J0809+5341: HCT observations 58
3.9 J0809+5341: SED parameters 61
3.10 3C 279: 2013 Dec γ-ray SED fitting 68
3.11 3C 279: 2013 Dec two-zone modeling parameters 71
3.12 3C 279: 2014 Apr $F_{\nu,m}$ 75
3.13 3C 279: 2014 Apr shortest variability timescale 76
3.14 3C 279: 2014 Apr flare fitting 77
3.15 3C 279: 2014 Apr γ-ray SED fitting 79
3.16 3C 279: 2014 Apr flare SED parameters 81
3.17 3C 279: 2014 Apr daily binned SED modeling parameters .. 84
3.18 3C 279: 2015 Jun γ-ray SED 90
3.19 3C 279: 2015 Jun SED modeling parameters 91
3.20 Mrk 421: NuSTAR variability characteristics 99
3.21 Mrk421: NuSTAR spectral analysis 101

4.1 List of γ-NLSv1 galaxies 106
4.2 Log of INOV observations 107
4.3 List of companion stars selected for INOV studies 108
4.4 INOV parameters ... 114
4.5 1H 0323+542: SED modeling parameters 116
4.6 PKS 1502+036 and PKS 2004−447: SED parameters 119
4.7 NLSv1 galaxies: γ-ray variability statistics 123
4.8 NLSv1 galaxies: average γ-ray spectral analysis 126
4.9 NLSv1 galaxies: activity dependent γ-ray spectral analysis 128