Table of Contents

Chapter 1

Candida albicans, the Opportunist: A Cellular and Molecular Perspective, 1-20

1.1. Introduction, 1
1.2. Morphology, 2
1.3. Pathogenicity, 4
1.3.1. Panel of virulence factors, 5
1.3.2. Host defences against Candida, 17

Chapter 2

Identification of N-acetylglucosamine-inducible genes in C. albicans, 21-57

2.1. Introduction, 21
2.1.1. The N-acetylglucosamine catabolic pathway, 22
2.1.2. Regulation of the N-acetylglucosamine catabolic pathway by GlcNAc, 22
2.1.3. The $NAG1$ cluster, 23
2.1.4. β-N-acetylglucosaminidase, 26
2.1.5. Differential screening of C. albicans genomic library, 27

2.2. Materials and Methods, 28
2.2.1. Plasmids and Strains used, 28
2.2.2. Media and Solutions, 28
2.2.3. Storage of bacterial strains, 30
2.2.4. Maintenance and growth of yeasts, 30
2.2.5 In vitro DNA manipulations, 31
2.2.5.1 Restriction Analysis, 31
2.2.5.2 Gel Electrophoresis, 31
2.2.5.3. PCR Amplification and Optimization, 32
2.2.5.3.1 Optimizations, 32
2.2.5.4. Subcloning into pBluescript and pGEMT-Easy, 33
2.2.5.5. Transformation of E. coli, 34
2.2.5.6. Screening and Analysis of Recombinants, 35
2.2.5.7. Small Scale Plasmid DNA Isolation, 36
2.2.5.8. Medium Scale Plasmid DNA Isolation, 37
2.2.5.9. Generation of unidirectional nested deletions with Exonuclease III, 38
2.2.5.10. DNA Sequencing, 40
2.2.5.11. DNA Isolation from C. albicans, 43

2.2.6. RNA isolation from Candida albicans, 44
2.2.7. Agarose gel electrophoresis of RNA and Northern blotting, 45

2.3. Results, 49
2.3.1. Sequencing of the putative GlcNAc-inducible clones, 49
2.3.2. Identification of the clones, 50
2.3.3. Expression profile of the genes, 51

2.4. Discussion, 53

Chapter 3
The role of CATHL4 gene in filamentation, 58-74

3.1. Introduction, 58
3.1.1. The thiamine biosynthetic pathway, 58
3.1.2. Thiamine as a regulator of gene expression in S. cerevisiae, 59
3.1.3. Thiamine-regulated gene expression has also been studied in the fission yeast S. pombe, 61
3.1.4. Thi operon is negatively regulated by thiamine in Salmonella typhimurium, 63
3.2. Materials and Methods, 64
3.2.1. Strains and Media, 64
3.2.2. Cloning and sequencing of the CATHI4 gene, 64
3.2.3. Southern analysis, 65
3.2.4. Induction with GlcNAc, 66
3.2.5. Northern Blot analysis, 67
3.2.6. Gene Disruption, 67
3.2.7. Nucleotide sequence accession number, 67
3.3. Results, 68
3.3.1. Isolation and sequence analysis of CATHI4, 68
3.3.2. Expression of CATHI4, 68
3.3.3. CATHI4 is not induced by ethanol or heat shock, 69
3.3.4. Effect of CATHI4 gene disruption, 69
3.3.5. Phenotype of the mutants, 70
3.4. Discussion, 72

Chapter 4
Expression of GlcNAc inducible Translation Elongation Factor 2 (TEF2) Gene during dimorphic transition in Candida albicans, 75-101
4.1. Introduction, 75
4.1.1. Mechanism of translation elongation, 75
4.1.2. Regulation of translation elongation, 77
4.1.3. Phosphorylation of TEF2: the link between the external signal and protein synthesis in C. albicans, 78
4.1.4. Role of cAMP on elongation rate, 79
4.1.5. Signaling pathways and regulators involved in dimorphism of Candida albicans, 80
4.1.5.1. The mitogen-activated protein kinase pathway, 81
4.1.5.2. The cAMP-dependent protein kinase A pathway, 81
4.1.5.3. Repression of hyphal development by Tup1, 84
4.1.5.4. Other pathways, 85
4.1.6. Effect of translation elongation rate on gene expression, 86
4.1.7. Possible role for the regulation of elongation rate, 87
4.1.8. Protein synthesis in C. albicans during yeast-to-hypha transition, 88
4.1.9. Translation elongation factors in C. albicans, 89
4.2. Materials and Methods, 90
4.2.1. Northern Blot analysis, 90
4.2.2. Uptake of N-acetylglucosamine, 90
4.2.3. Germ tube formation, 90
4.2.4. Making of spheroplasts, 91
4.2.5. cAMP assay, 91
4.2.6. Protein synthesis measurement by incorporation of radioactive amino acids, 91
4.2.7. Cloning of the KIN4 gene, 92
4.3. Results, 93
4.3.1. Expression of TEF2 during dimorphic transition in GlcNAc containing medium, 93
4.3.2. Effect of trifluoperazine (calmodulin inhibitor) and H89 (protein kinase A inhibitor) on TEF2 expression, 94
4.3.3. Level of total cellular cAMP during growth in GlcNAc, 94
4.3.4. Radioactive amino acid uptake during growth in GlcNAc, 95
4.3.5. Expression of TEF2 in various mutants, 96
4.3.6. Cloning of a putative TEF2 kinase from C. albicans, 96
4.3.7. Expression of \textit{KIN4}, 97

4.4. Discussion, 98

Summary, 102-112.

References, 113-131.