Bibliography

References

Cheung WY. (1980). Calmodulin plays a pivotal role in cellular regulation.
References

Science. **207**(4426), 19-27.

Gale CA, Bendel CM, McClellan M, Hauser M, Becker JM, Berman J, and Hostetter MK. (1998). Linkage of adhesion, filamentous growth, and virulence...

Hochstrasser M, Varshavsky A. (1990). In vivo degradation of a

Kumar MJ, Jamaluddin MS, Natarajan K, Kaur D, and Datta A. (2000). The inducible N-acetylglucosamine catabolic pathway gene cluster in *Candida albicans*: discrete N-acetylglucosamine-inducible factors interact at the promoter of...

Magee BB, Magee PT. (2000). Induction of mating in *Candida albicans* by
construction of MTLα and MTLα strains. *Science.* **289(5477),** 310-3.

References

20(22), 8364-72.

Praekelt UM, and Meacock PA. (1992). MOL1, a Saccharomyces cerevisiae gene that is highly expressed in early stationary phase during growth on molasses. Yeast. 8, 699-710.

of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. *Proc Natl Acad Sci USA.* 98(10), 5625-30.

1. *Candida albicans* budding cells at time zero after hyphal induction.

2. *Candida albicans* cells during septation when the mother cells lays down a chitin septum to form an intact daughter bud. Cells may remain attached for several generations during pseudohyphal growth.

3. Arrested budding cells initiate germ tube formation minutes after hyphal induction.

4. Single hyphal *Candida albicans* cell almost 60 minutes after hyphal induction.

5. *Candida albicans* hyphal cells showing clumping phenotype. Cells adhere to one another and to host cells (such as epithelia) during hyphal growth. This is one of several pathogenesis phenotypes.

6. Fully filamentous hyphal cells at 4 hours after hyphal induction.

7. *Candida albicans* pseudohyphal cells form elongated budding cells but not true septate hyphae.