Contents

1 Introduction .. 1
 1.1 Motivation ... 1
 1.2 Organic Molecular Semiconductor (OMS) 3
 1.3 Two Important Organic Molecular Semiconductors 6
 1.3.1 Why MePc based OMS is chosen for investigating the charge carrier
 conduction mechanism in disordered molecular solids? 7
 1.3.2 Electric Field Dependent Mobility (Poole-Frenkle Effect) 8
 1.4 Experimental Methods ... 9
 1.5 Problems Investigated ... 10
 1.6 Organization of Chapters 10

2 Growth and Characterization of Organic Thin Film Devices 13
 2.1 Introduction ... 13
 2.2 Growth of Organic Molecular Thin Film for Optical and Morphological Char-
 acterization .. 14
 2.3 Device Fabrication and Electrical Characterization 15
 2.4 Optical Characterization .. 16
 2.4.1 Molecular Electronic States 16
 2.4.2 Electronic Transitions in Optical Absorption Process 18
 2.4.3 Processes Involved in Photoluminescence 20
2.5 Morphological Characterization .. 22
 2.5.1 Optical characterization of MePc Thin Films 23
 2.5.2 AFM Characterization of MePc Thin Films 25
2.6 Characterization of Alq3 Thin Films 27
 2.6.1 Optical Characterization of Alq3 27
2.7 Effect of High-Energy Irradiation on Optical Transitions in Alq3 Thin Films .. 28
 2.7.1 High Energy Ion Irradiation on Alq3 Thin Films 29
 2.7.2 Effects of Irradiation on Alq3 30
2.8 Summary ... 32

3 Current Injection Mechanism in Organic Molecular Semiconductor 33
 3.1 Introduction .. 33
 3.2 Fabrication of Single Layer Device based on OMS 35
 3.3 Validity of Vacuum Level Alignment in OMS 35
 3.4 Diode Like Asymmetric J-V Characteristics in ITO/MePc/Al Structures .. 38
 3.5 Dependence of Diode Characteristics on Different Parameters 41
 3.6 Different Current Injection Processes 43
 3.6.1 Fowler-Northeim Tunneling (FNT) 43
 3.6.2 Rechardson-Shottkey (RS) Emission Model 44
 3.7 Charge Carrier Injection in Metal/OMS/Metal Structures 44
 3.8 Schottky Energy Barrier and Charge Injection 47
 3.9 Summary .. 52
4 Role of Correlation on Charge Carrier Transport in Organic Molecular Semiconductors

4.1 Introduction .. 54
4.2 Experimental Details ... 55
4.3 Current Transport in OMS 56
 4.3.1 Failure of SCLC and TCLC Conduction Mechanisms in OMS. 58
 4.3.2 Hopping Conduction Mechanism and Electric Field Dependence of Resistivity .. 59
 4.3.3 Simulation of Bulk Current with Field Dependent Mobility 62
4.4 Proposed Models For Charge Carrier Transport through OMS 64
 4.4.1 Gill's Phenomenological Model. 64
 4.4.2 Uncorrelated Gaussian Disorder Model(UGDM) 66
 4.4.3 Correlated Gaussian Disorder Model(CGDM) 67
4.5 Limitations of Uncorrelated Models 69
4.6 Importance of Correlation in Molecular Semiconductors 70
4.7 summary .. 72

5 Nature of Charge Carriers in Disordered Organic Molecular Semiconductors

5.1 Introduction .. 73
5.2 Experimental Details ... 75
5.3 Polaron Hopping in OMS 76
5.4 summary .. 81

6 Anomalous Behavior in Conductivity Copper Phthalocyanine Based Organic Molecular Semiconductors 82
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>82</td>
</tr>
<tr>
<td>6.2 Experimental details</td>
<td>83</td>
</tr>
<tr>
<td>6.3 Results and Discussions</td>
<td>83</td>
</tr>
<tr>
<td>6.4 Model</td>
<td>86</td>
</tr>
<tr>
<td>6.5 Physical Interpretation of the Phenomenological Model</td>
<td>89</td>
</tr>
<tr>
<td>6.6 Size of the Grains and Thickness of the Layer</td>
<td>89</td>
</tr>
<tr>
<td>6.7 summary</td>
<td>92</td>
</tr>
<tr>
<td>7 Organic Bistable Electrical Switch in tris, 8-Hydroxyquinoline Aluminum</td>
<td>93</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>93</td>
</tr>
<tr>
<td>7.2 Bistable Switching</td>
<td>94</td>
</tr>
<tr>
<td>7.3 Experimental Details</td>
<td>94</td>
</tr>
<tr>
<td>7.4 Switching Effect in Al/Alq3/Metal Structures</td>
<td>95</td>
</tr>
<tr>
<td>7.4.1 Al/Alq3/Al Structures</td>
<td>97</td>
</tr>
<tr>
<td>7.4.2 Al/Alq3/Au Structures</td>
<td>97</td>
</tr>
<tr>
<td>7.4.3 Al/Alq3/ITO Structures</td>
<td>97</td>
</tr>
<tr>
<td>7.5 Absence of Switching Action in Devices with High Work Function Cathode</td>
<td>98</td>
</tr>
<tr>
<td>7.6 Recovery to Insulating State</td>
<td>99</td>
</tr>
<tr>
<td>7.7 Proposed Mechanism for Switching in Alq3</td>
<td>101</td>
</tr>
<tr>
<td>7.8 Summary</td>
<td>103</td>
</tr>
<tr>
<td>8 Conclusions</td>
<td>105</td>
</tr>
<tr>
<td>8.1 Summary of the Work</td>
<td>105</td>
</tr>
<tr>
<td>8.2 Scope for Future Work</td>
<td>109</td>
</tr>
<tr>
<td>Appendix-A: Electrons in Organic Compounds</td>
<td>110</td>
</tr>
<tr>
<td>Appendix-B: Poole-Frenkle Field Dependent Mobility</td>
<td>111</td>
</tr>
</tbody>
</table>
Appendix-C: Vacuum Deposition Technique ... 113
Appendix-D: Metal Phthalocyanine($C_{32}H_{18}M N_3$) 114
Appendix-E: tris, 8-hydroxyquinoline Aluminum($C_{27}H_{18}Al_3N_3O_3$) 115
Appendix-F: Excitons in Organic Molecules ... 116
Appendix-G: Tunneling Current in Various Structures with Ultrathin Insulating Layer 117
Appendix-H: Commonly Observed Conduction Mechanisms in Crystalline Insulators 121
Appendix-I: Photoluminescence Spectroscopy .. 125
Appendix-J: Absorption Spectroscopy .. 127
Appendix-K: Atomic Force Microscopy .. 128
Appendix-L: Interfacing ... 129

Bibliography .. 129