CONTENTS

Preface

Chapter 1. Introduction to graphene structures

1.1 Introduction 01
1.2 Scope of the present work 03
1.3 Lattice structure of graphene structures 04
 1.3.1 Monolayer graphene 04
 1.3.2 Bilayer graphene 05
 1.3.3 Graphene nanoribbons 06
1.4 Energy states of carriers in graphene structures 07
 1.4.1 Monolayer graphene 07
 1.4.2 Bilayer graphene 09
 1.4.3 Graphene nanoribbons 10
 1.4.3.1 Armchair graphene nanoribbon 10
 1.4.3.2 Zigzag graphene nanoribbon 12
1.5 Scattering mechanisms in graphene structures 13
 1.5.1 Acoustic phonon scattering 14
 1.5.2 Non-polar optical phonon scattering 15
 1.5.3 Surface polar phonon scattering 16
 1.5.4 Charged impurity scattering 16
 1.5.5 Short-range disorder scattering 17
1.6 Scattering rate and relaxation time 18
References 19

PART A: Thermopower

Chapter 2. Basic formalism of thermopower in graphene

2.1 Introduction 21
2.2 General formalism of thermopower in graphene 22
 2.2.1 Diffusion thermopower in graphene 23
 2.2.2 Phonon-drag thermopower in graphene 24
References 28
Chapter 3. **Diffusion thermopower in a bilayer graphene**

3.1 Introduction
3.2 Theory of diffusion thermopower in bilayer graphene
 3.2.1 Relaxation time due to acoustic phonon scattering
 3.2.2 Relaxation time due to surface polar phonon scattering
 3.2.3 Relaxation time due to impurity scattering
3.3 Results and discussion
 3.3.1 Supported bilayer graphene
 3.3.2 Suspended bilayer graphene
3.4 Conclusions
References

Chapter 4. **Phonon-drag thermopower in a bilayer graphene**

4.1 Introduction
4.2 Theory of phonon-drag thermopower in bilayer graphene
 4.2.1 Low temperature regime
 4.2.2 High temperature regime
4.3 Results and discussion
4.4 Conclusions
References

Chapter 5. **Phonon-drag thermopower in semiconducting armchair graphene nanoribbon**

5.1 Introduction
5.2 Theory of phonon-drag thermopower in an AGNR
5.3 Results and discussion
5.4 Conclusions
References

PART B: High field transport properties

Chapter 6. **High field transport properties in a bilayer graphene**

6.1 Introduction
Chapter 6. Hot electron energy relaxation in a semiconducting armchair graphene nanoribbon

6.2 Theory

6.2.1 Energy and momentum loss rates due to acoustic phonons
6.2.2 Energy and momentum loss rates due to surface polar phonons
6.2.3 Hot surface polar phonons
6.2.4 Momentum loss rate due to impurity scattering
6.2.5 Total energy and momentum loss rates

6.3 Results and discussion

6.4 Conclusions

References

Chapter 7. Hot electron energy relaxation in a semiconducting armchair graphene nanoribbon

7.1 Introduction
7.2 Theory of hot electron power loss in AGNR
7.3 Results and discussion
7.4 Conclusions

References

Summary and conclusions

Scope for future research work