7. REFERENCES


Araujo K, Rezende L, Souza L, Daltoé R, Madeira K. Prevalence of estrogen receptor alpha PvuII (c454-397T> C) and XbaI (c454A> G) polymorphisms in a population of Brazilian women. Brazilian Archives of Biology and Technology. 2011; 54(6): 1151-1158.


Becherini L, Gennari L, Masi L, Mansani R, Massart F. Evidence of a linkage disequilibrium between polymorphisms in the human estrogen receptor α


Brunello A, Kapoor R, Extermann M. Hyperglycemia during chemotherapy for hematologic and solid tumors is correlated with increased toxicity.


Chatzidaki P, Mellos C, Briese V, Mylonas I. Does primary breast cancer in older women (≥ 80 years) have unfavorable histological characteristics? Archives of gynecology and obstetrics. 2011; 284(3):705-712.


Lakmini B. Quick score of hormone receptor status of breast carcinoma: correlation with the other clinico-pathological prognostic parameters. Indian Journal of Pathology Microbiology. 2009; 52:159-163.


Madeira K, Daltoé R, Sirtoli G, Carvalho A, Rangel L. Estrogen receptor alpha (ERS1) SNPs c454-397T> C (PvuII) and c454-351A> G (XbaI) are risk biomarkers for breast cancer development. Molecular biology reports. 2014; 41(8): 5459-5466.


Silva F, Sóter M, Sales M, Candido A, Reis F. Estrogen receptor alpha gene (ESR1) PvuII and XbaI polymorphisms are associated to metabolic and proinflammatory factors in polycystic ovary syndrome. Gene. 2015; 560(1):44-49.


Tsezou A, Tzetis M, Gennatas C, Giannatou E, Pampanos A. Association of repeat polymorphisms in the estrogen receptors alpha, beta (ESR1, ESR2) and androgen receptor (AR) genes with the occurrence of breast cancer. The Breast. 2008; 17(2): 159-166.


Zuppan P. Polymorphisms at the estrogen receptor (ESR) locus and linkage relationships on chromosome 6q. Cytogenetics and cell genetics. 1989; 51: 1116.