DECLARATION

This is to certify that material embodied in the thesis titled “Design and Analysis of An Efficient Technique for Traffic Management in Mobile Ad hoc Networks” is based on my original research work. The thesis has not been submitted to any other University or Institute for the award of any other degree or diploma. My indebtedness to others work has been duly acknowledged at relevant places.

Vikas Siwach
(Registration No. 12U/ITR0469)
Research Scholar,
(Department of Computer Science and Engineering),
University Institute of Engineering and Technology,
Maharshi Dayanand University,
Rohtak-124001(India).
ACKNOWLEDGEMENT

Acknowledgement is not only a ritual, but also an expression of thankfulness to all those who have helped in accomplishment of this thesis. At the foremost, I thank Lord Almighty, the ultimate source of wisdom, who has provided me wisdom and resources to accomplish this feat. I consider myself blessed and privileged to have Dr. Yudhvir Singh as my supervisor. I am deeply thankful to him for guiding me with his extensive knowledge, discussions, continuous motivation, persistent encouragement and keen involvement that persuaded me to complete this research. He has been an incredible mentor to me.

I express my wholehearted thanks to Dr. S.P.S Khatkar, Former Director, University Institute of Engineering and Technology, M.D.University, Rohtak for his unswerving moral support, continuous motivation, persistent encouragement and keen involvement that persuaded me to complete this research. I also express my wholehearted thanks to Dr. Rahul Rishi, Director, University Institute of Engineering and Technology, M.D.University, Rohtak for providing all the technical and non-technical support in the Institute. I express my heartfelt gratitude to him for being a perennial source of inspiration and also for the moral support extended to me in completing this task. I am also highly thankful to Er. Harkesh Sehrawat, faculty of CSE department, UIET, Rohtak for his constant help and direction in the right path towards the completion of my research work.

I will remain indebted to my family for providing me confidence and comfort to undertake this thesis. I wish to express my deep sense of gratitude to my father Shri Hariom Siwach, and my mother Smt. Krishna Siwach for their constant support, love and blessings. I find no words to thank my younger brother Mr. Parveen Siwach, my wife Pinki Siwach, my lovely daughter Nistha Siwach as well as my beloved son Harsh Siwach for their devoted support and prayers offered to complete my research work.

Vikas Siwach
ABSTRACT

MANETs are an innovative epitome of infrastructure-less, wireless communication for highly mobile users without usage of any such pre-existing infrastructure of communication. These networks can be formed as well as de-formed wherever and anywhere “on the fly” in the absenteeism of any sort of central administration unlike routers in wireline networks. These are composite, distributed, momentary, transitory, co-operative, possibly multi-hop, wireless, networks made up of a collection of dynamically self-organizing, self-creating, self-configuring, self-adaptive, self-administering, indiscriminately as well as arbitrarily located wireless transmitting and relaying nodes, which can possibly be bandwidth-constraint as well as resource (battery power)-constrained. In circumstances, where mobile telephony is either impossible or difficult to initiate, perhaps MANETs can be of great help whereby dependency on a costly infrastructure can be heavily reduced as equated to current situation in telecommunication wired as well as wireless networks. However, MANETs suffers from various shortcomings in comparison to wireline networks. Wireless networks is a “sea” of channels, with the objective to deliver required performance in most proficient manner, it becomes imperative for ‘Traffic Managers’ to administer Quality of Service (QoS) routes via regulating congestion by installing efficient routing mechanisms as well as congestion control mechanisms.

Here, varied Unicast as well as Multicast Routing protocol of MANETs were discussed, along with their Comparative Analysis for varied Simulation Metrics using Qualnet as Simulator is carried out. However, it is also established from simulation results of varied routing protocols that all of them exhibit different results under uniform MANET’s traffic environment, scenario and application environment. In MANETs, traffic management is one of the vital issues which are affected by routing to a great extent. So, there are various shortcomings in different routing protocols and it is difficult to choose routing protocol for different situations as there is trade-off between various protocols. Therefore, there is a necessity, inevitability and possibility of scheming efficacious Routing Protocols for MANET’S by transforming existing ones or developing newer ones according to necessities.

Here, numerous Routing Optimization Techniques as well as our Proposed Algorithm is extensively discussed along with its flowchart as well as its simulation environment in
MATLAB thereby realizing results and their analysis with varied count of nodes by comparing various parameters with BFOA as well as without BFOA for various performance metrics and finally conclusion is reached. Consequently, we can say that our Proposed Algorithm supported network is more efficient than preceding work.

Here, Congestion Control is extensively discussed along with Congestion collapse in wireless multi-hop networks, existing techniques for comparison with Proposed Technique named as Modified Adaptive Dynamic Congestion Control Technique (MAD-AODV) on simulation environment in Network Simulator (ns-2) thereby realizing results as well as their analysis for various performance metrics thereby finally conclusion is reached that our proposed method performs better than others on most of the performance metrics.

Here, Performance of varied TCP Variants in MANETs is extensively discussed along with impact of several factors on Variants of TCP as well as our Proposed Modified TCP Vegas using Network Simulator (ns-2.35 version) thereby realizing results and their analysis on the basis of mobility of nodes as well as Count (number) of nodes in the network for various performance metrics thereby finally conclusion is reached. After analyzing performance from simulated data and graphs, we found that Proposed Modified TCP Vegas is better than any other TCP variants for sending data and information due to better features embedded in it.

Here, various Quality of Service (QoS) centred Routing Protocols for MANETs is extensively discussed as well as our Proposed QoS Routing Protocol-Adaptive Hybrid QoS Routing Protocol (AH-AODV) for Estimation as well as selection of QoS Route contingent on various parameters using Network Simulator (ns-2.29 version) thereby realizing results and their analysis on various performance metrics, thereby finally conclusion is reached.

Here, Efficient Traffic Management is extensively discussed along with existing and proposed one using MATLAB as Simulator thereby realizing results and their analysis on the basis of Count (number) of nodes in the network for various performance metrics, thereby finally conclusion is reached.

So, Traffic classification system is a major technique for community as well as method protection within elaborate surroundings. To gain robust network traffic classification, a newer scheme is endorsed here to sort out main issues of unidentified purposes within the decisive effort of a minor ‘supervised training set’.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>CERTIFICATE</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv-v</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii-xviii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv-xxi</td>
</tr>
<tr>
<td>LIST OF GRAPHS</td>
<td>xxii-xxv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxvi-xxx</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xxxi-xxxvi</td>
</tr>
</tbody>
</table>

CHAPTER 1:

INTRODUCTION..1-39

1. Introduction...1-5

1.1 MANETs (Mobile Ad-hoc networks)...6-8

1.1.1 Early History of MANETs...8-9

1.1.2 Taxonomy of MANETs (As per installation)..9-10

1.1.3 2nd Taxonomy of MANETs (As per size)...10

1.1.4 Individualities of MANETs ..10-12

1.1.5 Solicitations of MANETs ...12-14

1.1.6 Issues, Challenges and Limitations of MANETs...15-21

1.1.7 Numerous concerns per specific layer ..21-22

1.1.8 Individualities ..22

1.2 System Architecture of MANETs..22-23

1.3 Aspects of Traffic Management in MANETs..24

1.3.1 Earlier traffic management in wired networks...24-25

1.3.2 Traffic Management in Mobile Networks...25-27
1.3.3 Issues in Traffic Management Network Protocol ... 27-28
1.3.4 Routing and associated Protocols .. 28-29
1.3.4.1 Reactive/on-demand reactive protocols .. 30
1.3.4.2 Proactive routing protocols ... 30
1.3.4.3 Hybrid protocols ... 30-31
1.3.4.4 Multipath Routing .. 31-32
1.3.5 Congestion Control ... 32-34
1.3.6 Quality of Service (QoS) ... 34
1.3.6.1 Challenges in meeting QoS requirements in MANETs 34-36
1.3.6.2 Quality of Service (QoS) based Routing in MANETs 36-37
1.4 Organization of Thesis in different chapters ... 37-39

CHAPTER 2: LITERATURE SURVEY ... 40-70
2.1 Literature Review ... 40-68
2.2 Findings from literature Review ... 68-69
2.3 Research Objectives ... 69-70

CHAPTER 3: ANALYSIS OF ROUTING PROTOCOLS 71-114
3.1 Introduction of Routing Protocols ... 71-72
3.1.1 Responsibilities of a good routing protocol ... 72
3.1.2 Major challenges faced by a routing protocol ... 72-73
3.1.3 Main requirements of a routing protocol .. 73-75
3.2 Routing Protocols Taxonomy .. 75
3.2.1 Based on information used to build routing tables 75
3.2.2 Based on when routing tables are built ... 75
3.2.3 Other Taxonomies of routing protocol ... 76-78
3.3 Reactive (On-demand) Routing Protocols .. 78
3.3.1 Ad-hoc On-demand Distance Vector (AODV) ... 79
3.3.2 Dynamic Source Routing Protocol (DSR) ... 79-80
3.4 Proactive (Table-Driven) Routing Protocols .. 80
3.4.1 Optimized Link State Routing (OLSR) ... 81
3.4.2 Dynamic MANET On-demand (DYMO)..81
3.5 Hybrid protocols...82
3.5.1 Zone Routing Protocol (ZRP)...82-83
3.6 Bellman–Ford algorithm..83-84
3.7 Simulation environment..85
3.7.1 Qualnet as Simulator...85
3.8 Comparative Evaluation of Various Existing Routing Protocols.........................86
3.8.1 On the basis of Count of Nodes (Number of Nodes)....................................87
3.8.1.1 End-to-End Delay..87-90
3.8.1.2 Throughput..91-93
3.8.1.3 Packet Dropped...94-96
3.8.1.4 PDR (Packet Delivery Ratio)...97-100
3.8.2 Mobility of Nodes...100
3.8.2.1 End-to-End Delay (seconds) Vs Mobility of nodes...............................101-104
3.8.2.2 Throughput..104-107
3.8.2.3 Packet Dropped...107-110
3.8.2.4 PDR (Packet Delivery Ratio)...110-113
3.9 Summary...114

CHAPTER 4: ANALYSIS OF MULTICASTING ROUTING PROTOCOLS.....115-144
4.1 Multicasting...115
4.1.1 Routing Protocol..115
4.1.2 Multicast Routing protocol...115-116
4.1.3 Brands of Multicast Routing Protocol..117
4.1.4 Intentions of Multicasting..117
4.1.5 Research Methodology..117-120
4.1.6 Multicast Routing..120
4.2 Taxonomy of Multicast Routing Protocol..120
4.2.1 On-Demand Multicast Routing Protocol (ODMRP).................................121-122
4.2.2 Multicast open shortest path first Protocol (MOSPF)...............................123
4.2.3 Distance vector multicast routing protocol (DVMRP)...............................123
4.2.4 Protocol Independent Multicast-Dense Mode behavior protocol (PIM-DM).....124-126
4.3 Simulation Environment...126
4.3.1 QualNet Modules..126
4.3.1.1 QualNet Simulator...126-127
4.3.1.2 QualNet Architect...127
4.3.1.3 QualNet Analyzer...127
4.3.2 QualNet Protocol Stack...127
4.3.2.1 Application Layer...127
4.3.2.2 Transport Layer..128
4.3.2.3 Network Layer...128
4.3.2.4 Link (MAC) Layer...128
4.3.2.5 Physical Layer...128
4.3.2.6 Communication Medium..128
4.3.2.7 Node Mobility..129
4.3.2.8 Network Layer Protocol in Qualnet......................................129
4.3.2.9 Working Process..129
4.3.3 Deduction from usage of QualNet..129
4.4 Performance Metrics..130
4.4.1 Application Layer Parameters..130
4.4.2 Network Layer Parameters...130
4.4.3 Scenario’s Discussion...130
4.5 Results and Corresponding Discussion on Application Layer Performance Metrics...131
4.5.1 Multicast Received Average End-to-End Delay..........................132-134
4.5.2 Multicast Received Throughput (bits/second)...........................134-136
4.5.3 Multicast Average Jitter..136-138
4.5.4 Multicast Average Total Message Transmitted........................138
4.5.5 Multicast Average Total Message Received..................................139-141
4.5.6 Multicast Packet Transmitted as Data Source...........................141
4.5.7 Multicast Average Total Message Received...............................141-143
4.6 Summary...143-144
5.6 Summary .. 182

CHAPTER 6: ANALYSIS OF CONGESTION CONTROL PROTOCOLS 183-213
6.1 Congestion Control ... 183
6.1.1 Congestion collapse in wireless multi-hop networks .. 184-185
6.2 Existing Techniques .. 185
6.2.1 Cross-layer congestion control (C3TCP) .. 185-186
6.2.2 TCP with Adaptive Pacing (TCP-AP) .. 186
6.2.3 TCP with Restricted Congestion Window Enlargement (TCP/RCWE) 186
6.2.4 Edge-based approach .. 186
6.2.5 Ad-hoc TCP (ADTCP) ... 187
6.3 Proposed Technique ... 187
6.3.1 Proposed Data Flow .. 188
6.3.2 Congestion Detection ... 188
6.3.3 Congestion Free Route Discovery .. 189
6.3.4 Congestion Free Route Maintenance .. 189
6.4 Implementation Scenario ... 190
6.4.1 Network Simulator (NS) .. 190
6.4.2 Implementation of Proposed Algorithm .. 190-192
6.4.3 Parameters Analysed .. 192
6.4.4 Network Scenario created for simulations ... 192-196
6.5 Results & Discussions ... 196
6.5.1 Comparative Analysis ... 196
6.5.1.1 Worst Case End to End Delay ... 197-198
6.5.1.2 Average End to End Delay ... 198-200
6.5.1.3 Packet Delivery Ratio (PDR) ... 200-202
6.5.1.4 Normalized routing overhead ratio (NROR) ... 202-204
6.5.1.5 Energy consumed (mu joules) ... 204-206
6.5.1.6 Average Number of Hopes Traversed (intermediate node traversed count) 206-208
6.5.1.7 Count (Number) of Packets Dropped ... 208-210
6.5.1.8 Throughput ... 210-212

xiii
5.5.2.1 Without BFOA...163-164
5.5.2.2 With BFOA...164-165
5.5.2.3 Comparison of parameters for 10 nodes with BFOA as well as without BFOA.....166
 1. Total Packet Transmitted Vs Count of Scenarios..166
 2. Total Delay Vs Count of Scenarios...166
 3. Total PDR vs Count of Scenarios...167
5.5.3 Scenario with 15 nodes..167
5.5.3.1 Without BFOA..167-168
5.5.3.2 With BFOA..168-170
5.5.3.3 Comparison of parameters for 10 nodes with BFOA as well as without BFOA....170
 1. Total Packet Transmitted Vs Count of Scenarios..170
 2. Total Delay Vs Count of Scenarios...170
 3. Total PDR vs Count of Scenarios...171
5.5.4 Scenario with 20 nodes..172
5.5.4.1 Without BFOA..172
5.5.4.2 With BFOA..173-174
5.5.4.3 Comparison of parameters for 20 nodes with BFOA as well as without BFOA....174
 1. Total Packet Transmitted Vs Count of Scenarios..174
 2. Total Delay Vs Count of Scenarios...175
 3. Total PDR vs Count of Scenarios...175-176
5.5.5 Scenario with 30 nodes..176
5.5.5.1 Without BFOA..176-177
5.5.5.2 With BFOA..177-178
5.5.5.3 Comparison of parameters for 30 nodes with BFOA as well as without BFOA....178
 1. Total Packet Transmitted Vs Count of Scenarios..178-179
 2. Total Delay Vs Count of Scenarios...179
 3. Total PDR vs Count of Scenarios...179-180
5.5.6 Average result..180
 1. Average Total Packet Vs Number of nodes...180
 2. Average Total Delay Vs Number of nodes...181
 3. Average Total PDR Vs Number of nodes...182
CHAPTER 5: ENHANCEMENT OF ROUTING TECHNIQUES145-182

5.1 Routing Optimization Techniques ..145
 5.1.1 Ant Colony Optimization (ACO) ..145
 5.1.2 Particle Swarm Optimization (PSO) ...145
 5.1.3 Artificial Bee Colony (ABC) ..146
 5.1.4 Cat Swarm Optimization (CSO) ..146
 5.1.5 Artificial Immune System (AIS) ..146
 5.1.6 Glowworm Swarm Optimization (GSO)147
 5.1.7 Bacteria Foraging Optimization Algorithm (BFOA)147-148
 5.1.8 Swarm Intelligence ..149
 5.1.8.1 Swarm Intelligence (SI) Models ..149
 5.1.8.2 Advantages of SI ..150
 5.1.8.3 Disadvantages of SI ..150
 5.2 History ...150
 5.2.1 Basic Algorithm of Original BFOA151
 5.3 Proposed Algorithm ...152
 5.3.1 Flow Chart of Proposed Algorithm152-154
 5.4 Implementation ..154
 5.4.1 Simulation tool-MATLAB ..154
 5.4.2 Simulation Environment ...155
 5.4.3 Implementation Scenarios ..155
 5.5 Results Analysis ...157
 5.5.1 Scenario with 25 nodes ...158
 5.5.1.1 Without BFOA ..158
 5.5.1.2 With BFOA ...159-160
 5.5.1.3 Average values for 25 nodes with BFOA as well as without BFOA160-161
 5.5.1.4 Comparison of parameters for 25 nodes with BFOA as well as without BFOA161
 1. Total Packet Transmitted Vs Count of Scenarios161
 2. Total Delay Vs Count of Scenarios162
 3. Total PDR vs Count of Scenarios ...162
 5.5.2 Scenario with 10 nodes ...163
CHAPTER 7: PERFORMANCE OF TCP VARIANTS IN MANETS 214-266

7.1 Introduction ... 214
7.1.1 Impact of High BER ... 214
7.1.2 Impact of Route Failures ... 214
7.1.3 Impact of Path Asymmetry .. 214-215
7.1.4 Network Partitioning ... 215
7.1.5 Power Scarcity ... 215
7.1.6 Multipath Routing ... 215
7.1.7 Interaction amongst MAC Protocol and TCP 215
7.1.8 Hidden and Exposed Node Impact 215-216
7.1.9 Problems in Wireless Network .. 216-217
7.2 Transmission Control Protocol ... 217
7.2.1 Why Need Congestion Control? .. 217-219
7.2.2 Congestion control in MANETs .. 219-220
7.3 Problem Identification .. 220
7.3.1 TCP Congestion Control .. 221-224
7.3.2 Process of Time-out ... 224
7.3.3 Process of Duplicate Acknowledgements (ACKs) 224
7.3.4 Slow Start phase ... 224-225
7.3.5 Algorithm for Slow Start Phase .. 225
7.3.6 Algorithm for Congestion Avoidance 225-226
7.3.7 Process of Fast Retransmit ... 226
7.3.8 Process of Fast Recovery .. 226-227
7.3.9 Process of Re-transmission Mechanism 227
7.3.10 Process of Selective Acknowledgment (SACK) 227
7.4 Variants of TCP ... 227
7.4.1 TCP Tahoe .. 227-228
7.4.2 TCP Reno ... 230
7.4.3 TCP New Reno ... 230-232
Chapter 8: QUALITY OF SERVICE ROUTING PROTOCOLS FOR MANETS...267-302
8.1 Quality of Service Routing Protocols for MANETs..............................267-276
8.2 Existing QoS Algorithm (CLAODV) ... 276-277
8.3 Proposed QoS Routing Protocol ... 277
8.3.1 Process for QoS in Routing Protocols ... 277
8.3.2 MAC layer Information .. 277
8.3.3 Load on the route .. 278
8.3.3.1 Location .. 278
8.3.3.2 Flow State .. 278
8.3.3.3 Admission Control .. 278
8.4 Estimation of QoS Route .. 278
8.4.1 Protocol Overhead Estimation ... 278-279
8.4.2 Bandwidth Estimation ... 279
8.4.3 Delay Estimation .. 279
8.4.4 Jitter Estimation .. 279
8.4.5 Packet Loss Estimation .. 279
8.5 QoS Route ... 279
8.5.1 Route Metric ... 279
8.5.2 Route Selection .. 279
8.5.3 Route weights .. 279
8.5.4 Weighting Method .. 279
8.6 Estimation Investigation ... 279
8.6.1 Prediction of the link quality .. 280
8.7 Steps for Selecting QoS Route ... 280-282
8.8 Proposed Extended AODV .. 282
8.8.1 Performance Evaluation ... 282
8.8.1.1 Major Parameter for Simulation .. 282-283
8.8.1.2 Performance metrics ... 283
8.8.1.3 Overhead Traffic ... 283
8.8.1.4 Average end-to-end delay ... 283
8.8.1.5 Packet Delivery Ratio ... 283
8.8.2 Simulation Results ... 283
8.8.2.1 Count (Number) of Nodes (ranging from 20 to 100)................ 284
8.8.2.1.1 Average End-to-End Delay...284-285
8.8.2.1.2 Control Overheads ..286-287
8.8.2.1.3 Packet Delivery Ratio (PDR)...288-289
8.8.2.2 Rate of Packets (Count/second) (varied from 1 to 16)..............................289
8.8.2.2.1 Average End-to-End Delay...289-291
8.8.2.2.2 Control Overheads ..291-292
8.8.2.2.3 Packet Delivery Ratio (PDR)...293-295
8.8.2.3 Pause Time (second) (varied from 10 to 240). ...295
8.8.2.3.1 Average End-to-End Delay...295-297
8.8.2.3.2 Control Overheads ..297-299
8.8.2.3.3 Packet Delivery Ratio (PDR)...299-302
8.9 Summary..302

CHAPTER 9: Traffic Management for MANETs...303-332
9.1 Introduction..303
9.2 Previous Work on Traffic Management in MANETs.......................................303-304
9.3 Taxonomy of Traffic Management in MANETs...304
9.3.1 Payload-Based Classification..305
9.3.2 Statistical analysis...305
9.4 Protocol Classification of Traffic Management in MANETs...........................305
9.4.1 Payload Based Traffic Taxonomy...305
9.4.1.1 Packet-Based No State (PBNS) Taxonomy...305-306
9.4.1.2 Packet-Based per Flow State (PBFS) Taxonomy....................................306
9.4.1.3 Message-Based per Flow State (MBFS) Taxonomy...............................306
9.5 Deep Packet Inspection for Traffic Management in MANETs306
9.5.1 Pattern Analysis...307
9.5.2 Numerical Analysis..307
9.5.3 Behavior & Heuristic Analysis..307
9.5.4 Protocol/State Analysis...307-308
9.6 Taxonomy methods for Traffic Management in MANETs...............................308
9.6.1 Statistical Methods...308-309
9.6.2 Benefits of Traffic Taxonomy ... 309-310
9.6.3 Statistical Bunching ... 310
9.6.4 ‘K-Means’ Traffic Clustering ... 311-313
9.6.5 Hierarchical Clustering ... 313
9.6.5.1 Single link algorithm ... 313
9.6.5.2 Minimum Spanning Tree ... 314
9.6.5.3 Kruskal’s algorithm .. 314
9.6.5.4 Union By Rank ... 314
9.6.5.5 Path Compression ... 315
9.6.5.6 Complete Link Algorithm .. 315-316
9.7 Proposed Work on Traffic Management in MANETs 316
9.7.1 Flow Chart of Proposed Traffic Management in MANETs 317-318
9.7.2 Tools and Techniques .. 318
9.7.2.1 Requirements of Hardware .. 318
9.7.2.2 Software Requirements ... 318
9.8 Simulator Used ... 319
9.8.1 Introduction to Matlab ... 319
9.8.2 Classification in MATLAB ... 319-324
9.8.3 Count (Number) of Nodes ... 324
9.8.3.1 End-to-End Delay ... 324-326
9.8.3.2 Normalized Routing Overhead ... 327-329
9.8.3.3 Total Throughput ... 329-331
9.9 Summary ... 332

CHAPTER 10: CONCLUSION AND FUTURE WORK .. 333-337
10.1 Conclusion .. 333-337
10.2 Future Scope ... 337-338

REFERENCES ... 339-360
Appendix ... 361-366
VITA ... 367
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>MANETs</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Communication passage in MANETs</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Change in topology due to movement of node C</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>MANETs Topology</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>MANETs (according to size)</td>
<td>10</td>
</tr>
<tr>
<td>1.6</td>
<td>MANET System Architecture</td>
<td>23</td>
</tr>
<tr>
<td>1.7</td>
<td>Traffic Management in Mobile Networks</td>
<td>26</td>
</tr>
<tr>
<td>1.8</td>
<td>Hierarchy of MANETs Routing Protocols</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>1st Routing Protocols Taxonomy</td>
<td>76</td>
</tr>
<tr>
<td>3.2</td>
<td>2nd Routing Protocols Taxonomy</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>3rd Routing Protocols Taxonomy</td>
<td>78</td>
</tr>
<tr>
<td>3.4</td>
<td>4th Routing Protocols Taxonomy</td>
<td>83</td>
</tr>
<tr>
<td>3.5</td>
<td>5th Routing Protocols Taxonomy by B.S.Manoj</td>
<td>84</td>
</tr>
<tr>
<td>4.1</td>
<td>Multicasting amid single origin and multiple target nodes</td>
<td>116</td>
</tr>
<tr>
<td>4.2</td>
<td>Brands of Multicast Routing Protocols</td>
<td>117</td>
</tr>
</tbody>
</table>
Figure 4.3: Procedure of JoinQuery and JoinReply..122

Figure 4.4: Scenario with 10 nodes...131

Figure 4.5: Average End-to-End Delay Vs Count of nodes.................................133

Figure 4.6: Average Throughput Vs Count of nodes...135

Figure 4.7: Average multicast Jitter Vs Count of nodes.......................................137

Figure 4.8: Average Total Message Transmitted Vs Count of nodes......................139

Figure 4.9: Average Total Message Received Vs Count of nodes..........................139

Figure 4.10: Multicast Average total message transmitted Vs Count of nodes.........141

Figure 4.11: Multicast Average Total Message Received Vs Count of nodes142

Figure 5.1: ‘Swim’ as well as ‘tumble’ process of bacteria....................................148

Figure 5.2: Random Topology...156

Figure 5.3: Transmission of Data..156

Figure 5.4: Node Selection Process...157

Figure 7.1: The Hidden station problem...216

Figure 7.2: The Exposed Station problem...216

Figure 7.3: Time line for Vital Variants of TCP..228

Figure 7.4: Node in MANETs to transfer data and ACK..................................245

Figure 7.5: Simulation in MANETs...245
Figure 8.1: End to End Delay Vs Count of Nodes..284
Figure 8.2: Count (Number) of nodes Vs Control Overheads..........................286
Figure 8.3: Count (Number) of nodes Vs PDR..288
Figure 8.4: Rate of Packets Vs End-to-End Delay..290
Figure 8.5: Rate of Packets Vs Control Overheads..292
Figure 8.6: Rate of Packets Vs PDR...294
Figure 8.7: Pause Time Vs End-to-End Delay..296
Figure 8.8: Pause Time Vs Control Overheads..298
Figure 8.9: Pause Time Vs PDR..299
Figure 9.1: Union By Rank..314
Figure 9.2: System Flow Chart for Network Traffic Classification316
Figure 9.3: Group Scatter plot displaying location of packets in 2D space for each class..319
Figure 9.4: Classification trees displaying location of packets in 2D space for each class..320
Figure 9.5: Classification Tree of Packets according to time parameter.............321
Figure 9.6: Incorrectly Classified packets Shown with cross in above group scatter plot..322
Figure 9.7: End to End Delay of LDA Classification Vs AODV and DSDV.............325
Figure 9.8: Normalized Routing Overhead of LDA Classification Vs AODV and DSDV..328
Figure 9.9: Overall Throughput of LDA Classification Vs Normal (Existing) protocols..330
LIST OF GRAPHS

<table>
<thead>
<tr>
<th>Graph Number</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>End-to-End Delay Vs Count of nodes</td>
<td>88</td>
</tr>
<tr>
<td>3.2</td>
<td>Bar Graph of End-to-End Delay Vs Count of nodes</td>
<td>90</td>
</tr>
<tr>
<td>3.3</td>
<td>Throughput (Kb/sec) Vs Count of nodes</td>
<td>91</td>
</tr>
<tr>
<td>3.4</td>
<td>Bar Graph of Throughput (Kb/sec) Vs Count of nodes</td>
<td>93</td>
</tr>
<tr>
<td>3.5</td>
<td>Packet Dropped Vs Count of nodes</td>
<td>94</td>
</tr>
<tr>
<td>3.6</td>
<td>Bar Graph of Packet Dropped Vs Count of nodes</td>
<td>97</td>
</tr>
<tr>
<td>3.7</td>
<td>PDR Vs Count of nodes</td>
<td>98</td>
</tr>
<tr>
<td>3.8</td>
<td>Bar Graph of PDR Vs Count of nodes</td>
<td>100</td>
</tr>
<tr>
<td>3.9</td>
<td>End-to-End Delay Vs Mobility of nodes</td>
<td>102</td>
</tr>
<tr>
<td>3.10</td>
<td>Bar Graph of End-to-End Delay Vs Mobility of nodes</td>
<td>104</td>
</tr>
<tr>
<td>3.11</td>
<td>Throughput (Kb/sec) Vs Mobility of nodes</td>
<td>105</td>
</tr>
<tr>
<td>3.12</td>
<td>Bar Graph of Throughput (Kb/sec) Vs Mobility of nodes</td>
<td>107</td>
</tr>
<tr>
<td>3.13</td>
<td>Packet Dropped Vs Count of nodes</td>
<td>108</td>
</tr>
<tr>
<td>3.14</td>
<td>Bar Graph of Packet Dropped Vs Count of nodes</td>
<td>110</td>
</tr>
<tr>
<td>3.15</td>
<td>PDR Vs Mobility of nodes</td>
<td>111</td>
</tr>
</tbody>
</table>
Graph 3.16: Bar Graph of PDR Vs Mobility of nodes..113

Graph 5.1: Total Packet Transmitted Vs Count of Scenarios for 25 Nodes........161

Graph 5.2: Total Delay Vs Count of Scenarios for 25 Nodes........................162

Graph 5.3: Total PDR vs Count of Scenarios for 25 Nodes............................163

Graph 5.4: Total Packet Transmitted Vs Count of Scenarios for 10 Nodes......166

Graph 5.5: Total Delay Vs Count of Scenarios for 10 Nodes..........................166

Graph 5.6: Total PDR vs Count of Scenarios for 10 Nodes............................167

Graph 5.7: Total Packet Transmitted Vs Count of Scenarios for 15 Nodes......170

Graph 5.8: Total Delay Vs Count of Scenarios for 15 Nodes..........................171

Graph 5.9: Total PDR vs Count of Scenarios for 15 Nodes............................171

Graph 5.10: Total Packet Transmitted Vs Count of Scenarios for 20 Nodes.....174

Graph 5.11: Total Delay Vs Count of Scenarios for 20 Nodes..........................175

Graph 5.12: Total PDR vs Count of Scenarios for 20 Nodes............................175

Graph 5.13: Total Packet Transmitted Vs Count of Scenarios for 30 Nodes.....178

Graph 5.14: Total Delay Vs Count of Scenarios for 30 Nodes..........................179

Graph 5.15: Total PDR vs Count of Scenarios for 30 Nodes............................179

Graph 5.16: Average Total Packet Vs Number of nodes.................................181
Graph 7.8: Average PDR Vs Mobility of nodes..256
Graph 7.9: Packet Dropped Vs Count of node..257
Graph 7.10: Average Packet Dropped Vs Count of nodes.........................259
Graph 7.11: End-to-End Delay Vs Count of nodes..................................260
Graph 7.12: Average End-to-End Delay Vs Count of nodes......................261
Graph 7.13: Throughput Vs Count of nodes...262
Graph 7.14: Average Throughput Vs Count of nodes...............................263
Graph 7.15: PDR Vs Count of nodes...264
Graph 7.16: Average PDR Vs Count of nodes...266
Graph 9.1: Packet Classification of Proposed Work into distinctive Classes...323
LIST OF TABLES

Table 1.1: Taxonomy of main Applications and Services in MANETs..........................13-14

Table 1.2: Individualities OF MANETs..22

Table 3.1: Description of the Experimental Scenario’s..87

Table 3.2: End-to-End Delay (seconds) Vs Count of nodes...88

Table 3.3: Throughput (Kb/s) Vs Count of nodes..91

Table 3.4: Packet Dropped Vs Count of nodes...94

Table 3.5: PDR Vs Count of nodes...97

Table 3.6: Description of experimental categories..101

Table 3.7: End-to-End Delay (seconds) Vs Mobility of nodes..101

Table 3.8: Throughput (Kb/s) Vs Mobility of nodes...104

Table 3.9: Packet Dropped Vs Count of nodes...107

Table 3.10: PDR Vs Mobility of nodes...110

Table 4.1: Summary of existing approaches..118-119

Table 4.2: Proportional Evaluation of Multicast routing protocols................................125-126

Table 4.3: Scenario configuration with 10 to 40 nodes...131
Table 4.4: Comparison of Protocols Vs Multicast Received Average End-to-End Delay...132
Table 4.5: Comparison of Protocols Vs Multicast Received Throughput..................134
Table 4.6: Comparison of Protocols Vs Multicast Average Jitter........................136
Table 4.7: Comparison of Protocols Vs Multicast Average Total Message Transmitted...138
Table 4.8: Comparison of Protocols Vs Multicast Average Total Message Received......139
Table 4.9: Comparison of Protocols Vs Multicast Packet Transmitted as Data Source....141
Table 4.10: Comparison of Protocols Vs Multicast Average Total Message Received......141
Table 5.1: Values Without BFOA For 25 Nodes ...158
Table 5.2: Values With BFOA For 25 Nodes ..159
Table 5.3: Average Values For 25 Nodes...161
Table 5.4: Values Without BFOA For 10 Nodes ...163
Table 5.5: Values With BFOA For 10 Nodes ..164
Table 5.6: Values Without BFOA For 15 Nodes ...167
Table 5.7: Values With BFOA For 15 Nodes ..168
Table 5.8: Values Without BFOA For 20 Nodes ...172
Table 5.9: Values With BFOA For 20 Nodes ..173
Table 5.10: Values Without BFOA For 30 Nodes...176
Table 5.11: Values With BFOA For 30 Nodes ..177
Table 5.12: Average Results ...180
Table 6.1: Worst EED (ms) Vs Packet Rate197
Table 6.2: Average EED (ms) Vs Packet Rate199
Table 6.3: PDR Vs Packet Rate ...201
Table 6.4: NR (Oh) Vs Packet Rate ...203
Table 6.5: Energy Consumed Vs Packet Rate205
Table 6.6: Average Number of Hopes Traversed Vs Packet Rate207
Table 6.7: Count of Packet Dropped Vs Packet Rate209
Table 6.8: Throughput Vs Packet Rate ...210
Table 7.1: Comparative Analysis of Current TCP Variants237
Table 7.2: Simulation Parameters ...244
Table 7.3: Packet Dropped Vs Mobility of nodes247
Table 7.4: Average Packet Dropped Vs Mobility of nodes248
Table 7.5: Mobility of nodes Vs End-to-End Delay249
Table 7.6: Average End-to-End Delay Vs Mobility of nodes251
Table 7.7: Throughput Vs Mobility of nodes252
Table 7.8: Average Throughput Vs Mobility of nodes253

xxviii
Table 7.9: PDR Vs Mobility of nodes ...254
Table 7.10: Average PDR Vs Mobility of nodes ...256
Table 7.11: Packet Dropped Vs Count of nodes ..257
Table 7.12: Average Packet Dropped Vs Count of nodes258
Table 7.13: End-to-End Delay Vs Count of nodes ..259
Table 7.14: Average End-to-End Delay Vs Count of nodes261
Table 7.15: Throughput Vs Count of nodes ...262
Table 7.16: Average Throughput Vs Count of nodes ..263
Table 7.17: Count of nodes Vs PDR ...264
Table 7.18: Average PDR Vs Count of nodes ..265
Table 8.1: Proportional Evaluation of 24 Multicast routing protocols267-276
Table 8.2: Route Discovery Process ..281
Table 8.3: Count (Number) of nodes Vs End-to-End Delay284
Table 8.4: Count (Number) of nodes Vs Control Overheads286
Table 8.5: Count (Number) of nodes Vs PDR ..288
Table 8.6: Rate of Packets Vs End-to-End Delay ...290
Table 8.7: Rate of Packets Vs Control Overheads ..291
Table 8.8: Rate of Packets Vs PDR...293
Table 8.9: Pause Time Vs End-to-End Delay...295
Table 8.10: Pause Time Vs Control Overheads..297
Table 8.11: Pause Time Vs PDR..299
Table 9.1: Packet Classification Matrix..322
Table 9.2: End to End Delay of LDA Classification Compared With Existing Works....323
Table 9.3: Normalized Routing Overhead of LDA Classification Vs AODV and DSDV..326
Table 9.4: Overall Throughput of LDA Classification Compared With Existing Works..328
LIST OF ABBERIVATION

1. DSR Dynamic Source Routing
2. MANET Mobile Ad-hoc Network
3. UML Unified Module Language
4. TCL Tool Command Language
5. NS Network Simulator
6. ACK Acknowledgment
7. MAC Media Access Control
8. WLAN Wireless Local Area Network
9. RREQ Request Reply
10. RREP Request Packet
11. DSDV Dynamic Destination Sequenced Distance Vector Routing Protocol
12. WRP Wireless Routing Protocol
13. GSR Global State Routing
14. AODV Ad hoc On-Demand Distance Vector Routing
15. MANETs Mobile Ad-hoc Networks
16. LAN Local Area Network
17. GPS Global Positioning System
18. ISPs Internet Service Providers
19. BSC Base Service Station
20. MSC Mobile Switching Center
21. AP’s Access Points
22. RF Radio Frequency
23. ISM Band Industrial Scientific and Medical Band
24. BW Band Width
25. SANET Static Ad-Hoc Networks
26. PRNET Packet Radio Networks
27. ALOHA Arial Locations of Hazardous Atmospheres
28. CSMA Carrier Sense Multiple Access
29. SURAN Survivable Adaptive Radio Networks
30. IETF Internet Engineering Task Force
31. GloMo Global Mobile Information Systems
32. NTDR Near-term Digital Radio
33. VANETs Vehicular Ad-Hoc Networks
34. In-VANET’s Intelligent Vehicular Ad-Hoc Networks
35. I-MANETs Internet Based MANETs
36. MAC Media Access Control
37. ODMRP On-Demand Multicast Routing Protocol
38. DVMRP Distance Vector Multicast Routing Protocol
39. PIM Protocol Independent Multicast
40. MOSPF Multicast Open Shortest Path First
41. RREQ Route Request
42. RREP Route Reply
43. IP Internet Protocol
44. WSN Wireless Sensor Network
45. PAN Personal Area Network
46. FCC Federal Communication Commission
47. RTT Round Trip Time
48. BER Bit Error Rate
49. RTO Retransmission Time Out
50. TCP Transmission Control Protocol
51. DoS Denial of Service
52. QoS Quality of Service
53. RPC Remote Procedure Call
54. GC Group Controller
55. TXI Transaction Identifier
56. TDM Time Division Multiplexing
57. ATM Asynchronous Transfer Mode
58. 3GPP Third Generation Partnership Project
59. HSDPA High-Speed Shared Downlink Packet Access
60. DAC Digital Analog Communication
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>61. CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>62. MTU</td>
<td>Maximum Transmission Unit</td>
</tr>
<tr>
<td>63. RPs</td>
<td>Routing Protocols</td>
</tr>
<tr>
<td>64. RTS/CTS</td>
<td>Request to Send/Clear to Send</td>
</tr>
<tr>
<td>65. AH-AODV</td>
<td>Adaptive Hybrid AODV</td>
</tr>
<tr>
<td>66. LCS</td>
<td>Longest Common Subsequence</td>
</tr>
<tr>
<td>67. TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>68. EED</td>
<td>End-to-End Delay</td>
</tr>
<tr>
<td>69. PDR</td>
<td>Packer Delivery Ratio</td>
</tr>
<tr>
<td>70. ACO</td>
<td>Ant Colony Optimization</td>
</tr>
<tr>
<td>71. PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>72. ABC</td>
<td>Artificial Bee Colony</td>
</tr>
<tr>
<td>73. CSO</td>
<td>Cat Swarm Optimization</td>
</tr>
<tr>
<td>74. AIS</td>
<td>Artificial Immune System</td>
</tr>
<tr>
<td>75. GSO</td>
<td>Glowworm Swarm Optimization</td>
</tr>
<tr>
<td>76. BFON</td>
<td>Bacterial Foraging Optimization algorithm</td>
</tr>
<tr>
<td>77. SI</td>
<td>Swarm Intelligence</td>
</tr>
<tr>
<td>78. C-TCP</td>
<td>Cross-layer Congestion Control</td>
</tr>
<tr>
<td>79. TCP-AP</td>
<td>TCP with Adaptive Pacing</td>
</tr>
<tr>
<td>80. TCP/RCWE</td>
<td>TCP with Restricted Congestion Window Enlargement</td>
</tr>
<tr>
<td>81. ADTCP</td>
<td>Ad-Hoc Transmission Control Protocol</td>
</tr>
<tr>
<td>82. MADC-AODV</td>
<td>Modified Adaptive Dynamic Congestion AODV</td>
</tr>
<tr>
<td>83. NROR</td>
<td>Normalized Routing Overhead Ratio</td>
</tr>
<tr>
<td>84. AD-TCP</td>
<td>Ad-hoc TCP</td>
</tr>
<tr>
<td>85. CLAODV</td>
<td>Cloud Based AODV</td>
</tr>
<tr>
<td>86. AH-AODV</td>
<td>Adaptive Hybrid AODV</td>
</tr>
<tr>
<td>87. PBNS</td>
<td>Packet-Based No State</td>
</tr>
<tr>
<td>88. PBFS</td>
<td>Packet-Based per Flow State</td>
</tr>
<tr>
<td>89. MBFS</td>
<td>Message-Based Per Flow State</td>
</tr>
<tr>
<td>90. CAC</td>
<td>Connection Admission Control</td>
</tr>
<tr>
<td>91. OFDM</td>
<td>Orthogonal Frequency Division Multiplexing</td>
</tr>
</tbody>
</table>
92. NTP Network Time Protocol
93. CSMA Carrier Sense Multiple Access
94. BB Black-Burst
95. ELFN Explicit Link Failure Notification
96. M-ADTCP Modified AD-hoc Transmission Control Protocol
97. AOMDV Ad-hoc On-Demand Multipath Distance Vector Routing Protocol
98. CA-AOMDV Channel Aware AOMDV
99. HTTP Hyper Text Transfer Protocol
100. OPNET Operations Network
101. CBFO Cooperative Bacterial Foraging Optimization
102. GA Genetic Algorithm
103. BCOA Bacterial Foraging Optimization Algorithm
104. SAI Swarm Artificial Intelligence
105. MLP Multi-Layer Perceptron
106. GMM Gaussian Mixture Model
107. SVM Support Vector Machine
108. P2P Peer-to-Peer
109. LDA Linear Discriminate Evaluation
110. NN Nearest Neighbor
111. SML Supervised Machine Learning
112. DPI Deep Packet Inspection
113. TTL Time to Live
114. LASER LCS based Application Signature Extraction technique
115. DYMO Dynamic MANET On-Demand
116. NHPD Neighborhood Discovery Protocol
117. OLSR Optimized Link State Routing Protocol
118. ACOR Admission Control Enabled On-demand Routing
119. AMRRoute Ad-hoc Multicast Routing
120. AMRIS Ad-hoc Multicast Routing Protocol Utilizing Increasing-idNumbers
121. BR Branch Reconstruction
122. CAMP Core-Assisted Mesh Protocol

xxxiv
123. BER Bit Error Rate
124. SNR Signal-to-Noise Ratio
125. FSR Fisheye State Routing
126. ZRP Zone Routing Protocol
127. RPs Routing Protocols
128. MPRs Multipoint Relays
129. IARP Intra-zone Routing Protocol
130. IERP Inter-zone Routing Protocol
131. HSR Hierarchical State Routing
132. TBRPF Topology Based Reverse Path Forwarding
133. DREAM Distance Routing Effect Algorithm for Mobility
134. STAR Source Tree Adaptive Routing Protocol
135. GUI Graphical User Interface
136. CBR Constant Bit Rate
137. IGMP Internet Group Management Protocol
138. LSA Link State Advertisement
139. AS Autonomous system
140. RIP Routing Information Protocol
141. TRPB Truncated Reverse Path Broadcasting
142. RPF Reverse Path Forwarding
143. NLT Neighbor Liveness Timer
144. MCBR Multicast Constant Bit Rate
145. FTP File Transfer Protocol
146. UDP User Datagram Protocol
147. ES Evolutionary Strategies
148. EP Evolutionary Programming
149. MATLAB Matrix Laboratory
150. MADC-AODV Modified Adaptive Dynamic AODV
151. LSD Link Stability Degree
152. CFR Congestion Free Route
153. FIFO First In First Out
<table>
<thead>
<tr>
<th></th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>154.</td>
<td>CAM</td>
<td>Congestion Avoidance Mechanism</td>
</tr>
<tr>
<td>155.</td>
<td>SACK</td>
<td>Selective Acknowledgment</td>
</tr>
<tr>
<td>156.</td>
<td>CWD</td>
<td>Congestion Window</td>
</tr>
<tr>
<td>157.</td>
<td>FACK</td>
<td>Forward acknowledgement</td>
</tr>
<tr>
<td>158.</td>
<td>AIMD</td>
<td>Additive Increase/Multiplicative Decrease</td>
</tr>
<tr>
<td>159.</td>
<td>NAM</td>
<td>Network Animator Output</td>
</tr>
<tr>
<td>160.</td>
<td>LDA</td>
<td>Linear Discriminant Analysis</td>
</tr>
</tbody>
</table>