Contents

General Remarks
Abbreviations Used

PART – I

“INVESTIGATIONS OF SOME AQUA MEDIATED AS WELL AS MICROWAVE ASSISTED CHEMICAL SYNTHESIS- A GREEN CHEMISTRY APPROACH”

CHAPTER – 1: GENERAL INTRODUCTION

1.1 Green Chemistry: Science of “Sustainability”
1.2 A Brief History
1.3 Some aspects of Organic synthesis-
 A Green Chemistry perspective
 1.3.1 Polymers
 1.3.2 Solvents
 1.3.3 Catalysis
 1.3.4 Biobased/renewables
 1.3.5 Synthetic Methodologies
 1.3.6 Analytical Methods
 1.3.7 Design for safer chemicals
1.4 Microwave Assisted Organic Synthesis (MAOS) - A Brief Review
 1.4.1 A brief history of Microwave assisted Organic Synthesis
 1.4.2 Applications of Microwaves in heterocyclic Ring formation
 1.4.2.1 Five membered Hetero cyclic rings
 1.4.2.2 Benzo derivatives of five membered rings
 1.4.2.3 Six membered Rings
 1.4.2.4 Poly cyclic six membered rings
 1.4.2.5 Nucleophilic substitution reactions
 1.4.2.6 Hetero Diels-Alder Reactions
 1.4.2.7 1, 3-Dipolar Cyclo-addition Reactions
 1.4.2.8 Oxidation

Department of Chemistry, Saurashtra University, Rajkot – 360 005
1.5 Aqua Mediated Organic Synthesis (AMOS)-A Brief Review

1.5.1 Is water the Green Solvent? 46
1.5.2 What are limitations of water as a solvent? 47
1.5.3 How do microwaves promote the reaction in aqueous medium? 47
1.5.4 How does aqueous chemistry expedite organic synthesis? 48
1.5.5 Some examples of Microwave assisted organic synthesis 50

Using water as a solvent
1.5.5.1 Transition metal catalyzed reactions 50
1.5.5.2 N-, O-, S- Functionalization reactions 56
1.5.5.3 Heterocyclic synthesis 58
1.5.5.4 Mannich type Multi Component Reaction 60
1.5.5.5 Nucleophilic Aromatic Substitution 61
1.5.5.6 Epoxide Ring Opening reaction 61
1.5.5.7 Diels-Alder Cyclo Addition Reaction 62

1.6 Biological and Medicinal Significance of Pyrimidines
and other related heterocyclic scaffolds

1.6.1 Biological Significance 63
1.6.2 Medicinal Significance 64

1.6.2.1 Antineoplastic / Anticancer Agents 64
1.6.2.2 Drugs for Hyperthyroidism 65
1.6.2.3 Antifolates, Antibacterial and Antiprotozoal 66
1.6.2.4 Sulfur drugs 67
1.6.2.5 Antivirals and Anti-AIDS 68
1.6.2.6 Antibiotics 70
1.6.2.7 Antifungals 72
1.6.2.8 Anthelmintics 72
1.6.2.9 Antitubercular Drugs 73
1.6.2.10 CNS active agents 74
1.6.2.11 Cardiac agents 77
1.6.2.12 Antihistaminic Pyrimidines 79
1.6.2.13 Analgesics/NSAID drugs 80
1.6.2.14 Metabolic Electrolytes 81

1.6.3 Conclusion 81
1.7 Thiazolidinone: A magic moiety
 1.7.1 Chemistry of Thiazolidinone
 1.7.2 Synthesis of 4-Thiazolidinone
 1.7.3 Pharmacological importance of 4-Thiazolidinones

REFERENCES

CHAPTER 2
SECTION-A AQUA MEDIATED AND MICROWAVE ASSISTED
SYNTHESIS OF 2-Amino-7-hydroxy-4-(substituted phenyl)-4H-chromene-3-carbonitriles

2.1 Benzopyran-Nature’s Preferred “Privileged” structure
 2.1.1 Some Previous Synthetic Attempts

2.2 Aim of current work

2.3 Reaction Scheme
 2.3.1 Physical Data table

2.4 Plausible Reaction Mechanism
 2.4.1 Step-I Formation of Benzylidenemalanonitrile
 2.4.2 Formation of 2-Amino-7-hydroxy-4-(substituted phenyl)-4H-chromene-3-carbonitriles from Benzylidenemalanonitrile

2.5 Experimental
 2.5.1 Materials and Methods
 2.5.2 General Procedure: 2-Amino-7-hydroxy-4-(substituted phenyl)-4H-chromene-3-carbonitriles

2.6 Analytical Data

2.7 Spectral Discussion
 2.7.1 IR Spectral Study
 2.7.2 Mass Spectral Study
 2.7.3 1H-NMR spectral Study

2.8 Spectral Representation of the synthesized compounds

REFERENCES
SECTION-B AQUA MEDIATED AND MICROWAVE ASSISTED SYNTHESIS OF *Ethyl-2-Amino-7-hydroxy-4-(substituted phenyl)-4H-chromene-3-carboxylates*

2.9 Aim of current work 157
2.10 Reaction Scheme 160
2.10.1 Physical Data Table 160
2.11 Plausible Reaction Mechanism 161
2.11.1 Formation of Ethyl-(2-cyano-3-phenyl) acrylate Intermediate 161
2.11.2 Formation of *Ethyl-2-Amino-7-hydroxy-4-(substituted phenyl)-4H-chromene-3-carboxylates* 162
2.12 Experimental 163
2.12.1 Materials and Methods 163
2.12.2 General Procedure: *Ethyl-2-Amino-7-hydroxy-4-(substituted phenyl)-4H-chromene-3-carboxylates* 163
2.13 Analytical Data 164
2.14 Spectral Discussion 172
2.14.1 IR spectral Study 172
2.14.2 Mass Spectral Study 172
2.14.3 ¹H-NMR Spectral Study 177
2.15 Spectral Representations of Compounds 180
2.16 Results and Discussions 185
2.17 Conclusion 185

REFERENCES 186

CHAPTER – 3

SECTION-A MICROWAVE ASSISTED SYNTHESIS OF *8-Hydroxy-5-substituted phenyl-3H-chromeno-[2,3-d]pyrimidine-4(5H)-ones*

3.1 Role of fused heterocycles in Drug Discovery Paradigm 190
3.1.1 Some Reported Synthetic Strategies 193
3.2 Aim of current work 196
3.3 Reaction Scheme 197
3.3.1 Physical Data Table 197

3.4 Plausible Reaction Mechanism 198
 3.4.1 Step-1 Acid catalyzed hydrolysis of the Nitrile Group 198
 3.4.2 Step-2 formation of 8-Hydroxy-5-substituted phenyl-3H-Chromeno-[2,3-d]pyrimidine-4(5H)-ones 199

3.5 Experimental 200
 3.5.1 Materials and Methods 200
 3.5.2 General Procedure 8-Hydroxy-5-substituted phenyl-3H-Chromeno-[2,3-d]pyrimidine-4(5H)-ones 200

3.6 Analytical Data 201

3.7 Spectral Discussion 209
 3.7.1 IR spectral study 209
 3.7.2 Mass spectral study 209
 3.7.3 1H - NMR spectral study 213

3.8 Spectral Representations of synthesized compounds 218

REFERENCES 221

SECTION-B: MICROWAVE ASSISTED SYNTHESIS OF 8-Hydroxy-2-methyl-5-substituted phenyl-3H-chromeno-[2,3-d]pyrimidine-4(5H)-one

3.9 Aim of current work 223

3.10 Reaction Scheme 225
 3.10.1 Physical Data Table 225

3.11 Plausible Reaction Mechanism 226
 3.11.1 Step-1 Acid catalyzed hydrolysis of the Nitrile Group 226
 3.11.2 Step-2 formation of 8-Hydroxy-2-methyl-5-substituted phenyl-3H-Chromeno-[2,3-d]pyrimidine-4(5H)-ones 227

3.12 Experimental 228
 3.12.1 Materials and Methods 228
 3.12.2 General Procedure 8-Hydroxy-2-methyl-5-substituted phenyl-3H-Chromeno-[2,3-d]pyrimidine-4(5H)-ones 228

3.13 Analytical Data 229

3.14 Spectral Discussion 237
CHAPTER – 4
SECTION-A A RAPID MICROWAVE ASSISTED SYNTHESIS OF N-(2-methyl indoline-1-yl)(substituted phenyl)methanimines

4.1 Indole: A versatile Heterocyclic system 254
 4.1.1 Physical Properties 254
 4.1.2 Introduction to Indoline System 255
 4.1.2.1 Reduction of Indole 255
 4.1.2.2 Preparation of 2-Methyl indoline 257
 4.1.2.3 Preparation of N-Amino-2-methyl indoline 259

4.2 Aim of current work 260

4.3 Reaction Schemes 261
 4.3.1 Physical Data Table 262

4.4 Plausible Reaction Mechanism 263
 4.4.1 Formation of N-Benzylidene-2-methylindoline-1-amine 263

4.5 Experimental 264
 4.5.1 Materials and methods 264
 4.5.2 General Procedures 264

4.6 Analytical Data 268

4.7 Spectral discussion 278
 4.7.1 IR spectral study 278
 4.7.2 Mass spectral study 278
 4.7.3 ¹H- NMR spectral study 281

4.8 Spectral Representation of compounds 287

REFERENCES 292
SECTION-B A RAPID MICROWAVE ASSISTED SYNTHESIS OF
N-(2-methylindoline-1yl)(substituted-1,3-diphenyl-1H-pyrazole-4-yl)methanimines

4.9 Pyrazoles as Bioactive core structure 297
4.10 Aim of current work 302
4.11 Reaction Schemes 303
 4.11.1 Physical Data Table 304
4.12 Plausible Reaction Mechanism 305
 4.12.1 Formation of N-Benzylidene-2-methylindoline-1-amine 305
4.13 Experimental 306
 4.13.1 Materials and methods 306
 4.13.2 General Procedures 306
4.14 Analytical Data 308
4.15 Spectral discussion 313
 4.15.1 IR spectral study 313
 4.15.2 Mass spectral study 313
 4.15.3 1H- NMR spectral study 317
4.16 Spectral Representation of compounds 323
4.17 Results and Discussions 328
4.18 Conclusion 328

REFERENCES 329

CHAPTER – 5
A MICROWAVE ASSISTED SYNTHESIS OF Thiazolidinones like 3-(2-
Methylindoline-1-yl)-2-substituted phenylthiazolidin-4-ones using thioglycolic acid

5.1 Synthetic Strategies for 4-Thiazolidinones 333
 5.1.1 4-Thiazolidinone- A biologically active scaffold 337
5.2 Aim of current work 343
5.3 Reaction Schemes 344
 5.3.1 Physical Data Table 344
5.4 Plausible Reaction Mechanism 345
5.4.1 Formation of 4-Thiazolidinone from N-Benzylidene-2-methylindoline-1-amine

5.5 Experimental

5.5.1 Materials and methods
5.5.2 General Procedure: 3-(2-Methylindoline-1-yl)-2-substituted phenyl thiazolidin-4-ones

5.6 Analytical Data

5.7 Spectral discussion

5.7.1 IR spectral study
5.7.2 Mass spectral study
5.7.3 1H- NMR spectral study

5.8 Spectral Representation of compounds

5.9 Results and Discussion

5.10 Conclusion

REFERENCES

PART – II BIOLOGICAL EVALUATION OF SYNTHESIZED NEW CHEMICAL ENTITIES (NCE’s)

CHAPTER – 6

BIOLOGICAL ACTIVITY STUDY OF NEWLY SYNTHESIZED COMPOUNDS

6.1 Introduction

6.2 Methodology

6.2.1 Materials

6.2.2 Procedure

6.3 Results and Discussion

6.4 Conclusions

REFERENCES

SUMMARY

CONFERENCES/SEMINARS/WORKSHOPS ATTENDED