CHAPTER 1

An Introduction to the Chemistry of 1,2-Cyclopropanated Sugars and 2-C-Branched Glyco-Amino Acids (GAAs) and Septanoses

Abstract 1
1.1. Cyclopropanes in organic synthesis 1
 1.1.1. Synthesis of cyclopropanes 2
1.2. 1,2-Cyclopropanated sugars 3
 1.2.1. Synthesis of 1,2-cyclopropanated sugars 3
 1.2.2. Ring-opening of 1,2-cyclopropanated sugars 8
 1.2.3. Ring-expansion of 1,2-cyclopropanated sugars 13
1.3. 2-C-Branched glyco-amino acids (GAAs) 19
 1.3.1. Synthesis of 2-C-branched glyco-amino acids 20
1.4. Seven-membered cyclic sugars or septanoses 24
 1.4.1. Synthesis of septanose monosaccharides 25
 1.4.2. Synthesis of septanose containing di- and oligosaccharides 28
1.5. Glycosylation reactions of 1,2-cyclopropanated sugars 31
 1.5.1. Ring-opening of 1,2-cyclopropanated sugar donors 31
 1.5.2. Ring-expansion of 1,2-cyclopropanated sugar donors 33
1.6. References 34
CHAPTER 2

Synthesis of 2-C-Branched Oligo-glyco-amino acids (OGAAs) by Ring Opening of 1,2-Cyclopropanecarboxylated Sugar Donors

Abstract

2.1. Introduction

2.2. Results and discussion
 2.2.1. Discovery and optimization of the novel glycosylation reaction
 2.2.2. Plausible mechanistic pathway
 2.2.3. Scope of the reaction
 2.2.4. Regioselectivity of the reaction
 2.2.5. Synthesis of oligo-glyco-amino acid (OGAA) derivative

2.3. Summary and conclusion

2.4. Experimental section
 2.4.1. Materials and methods
 2.4.2. Experimental procedures and spectral data

2.5. References

2.6. NMR spectra
CHAPTER 3

A Ring Expansion-Glycosylation toward the Synthesis of Septano-oligosaccharides

Abstract 111

3.1. Introduction 111

3.2. Results and discussion 113

 3.2.1. Discovery and optimization of the ring-expansion glycosylation reaction 113
 3.2.2. Plausible mechanistic pathway 114
 3.2.3. Scope of the reaction 115
 3.2.4. Synthesis of diseptano-hexose trisaccharides 121
 3.2.5. Iterative protocol for the synthesis of septano-oligosaccharide 122

3.3. Summary and conclusion 123

3.4. Experimental section 123

 3.4.1. Materials and methods 123
 3.4.2. Experimental procedures and spectral data 123

3.5. References 146

3.6. NMR spectra 149
CHAPTER 4

A One-Pot Septanoside Formation and Glycosylation of Dithioacetals Derived from 1,2-Cyclopropanated Sugars

Abstract 177
4.1. Introduction 177
4.2. Results and discussion 178
 4.2.1. Synthesis of novel acyclic dithioacetal donors 178
 4.2.2. Discovery of the glycosylation reaction 180
 4.2.3. Plausible mechanistic pathway 182
 4.2.4. Scope of the reaction 183
4.3. Summary and conclusion 187
4.4. Experimental section 187
 4.4.1. Materials and methods 187
 4.4.2. Experimental procedures and spectral data 188
4.5. References 203
4.6. NMR spectra 204