Contents

List of Figures xvi

List of Tables xix

1 Introduction 1

1.1 Background ... 1
1.2 Motivation ... 3
1.3 Outline of the Thesis Organisation 4

2 Review of Previous Works 11

2.1 Introduction .. 11
2.2 Review on Speech Processing based on Allophonic Variations and Phone Duration Modeling .. 13
2.3 Review on Grapheme-to-Phoneme transcription methods 15
2.4 Review on Keyword Spotting Techniques 16
2.4.1 Acoustic Keyword Spotting Methods 19
2.4.2 LVCSR based Keyword Spotting Methods 21
2.5 Review on audio classification using Multiple Instance Learning 23
2.6 Review on Speaker Spotting methods with emphasis on nonlinear properties of the speech signal 25
2.7 A special review on Indian language speech recognition 26
2.8 Conclusion .. 41
3 A Study on Malayalam Phonology based on Durational and Spectral Characteristics of Allophonic Variations in Vowel Phonemes 43

3.1 Introduction .. 43

3.2 Malayalam Phoneme Set and Allophones 45

3.2.1 Malayalam Vowel Phones 45

3.2.2 Malayalam Consonant Phones 47

3.3 Founding an Exhaustive Rule Set for Malayalam Allophone Formation 48

3.3.1 Rule set for the formation of Malayalam Vowel Allophones based on the Position and Neighbourhood Information 49

3.3.2 Rule Set for the formation of Malayalam Consonant Allophones 57

3.3.3 TEMU Malayalam Phonetic Dataset 61

3.4 Durational Properties of Malayalam Vowel Allophones 62

3.5 Formant Frequency Analysis of Malayalam Vowel Allophones 68

3.6 Clustering of Vowel Allophones using K-means clustering 77

3.7 Conclusion ... 80

4 A Comprehensive Grapheme-to-Phoneme Transcription Algorithm for Malayalam with Application to Speech Processing 82

4.1 Introduction ... 82

4.2 Malayalam Orthography and Categorisation of Grapheme Units 84

4.2.1 Malayalam Vowels ... 84

4.2.2 Malayalam Diphthongs 86

4.2.3 Anusvaram and Chandrakkala 86

4.2.4 Malayalam Consonant Classes 87

4.2.5 Formation of Malayalam Compound Letters 88

4.2.6 Chillukkal ... 90

4.3 A Complete Rule based Automatic G2P Transcriptor for Malayalam .. 91

4.3.1 Pre-Processing Stages 91

4.3.2 Implementation of the Proposed Malayalam G2P Transcription Algorithm ... 92
4.3.3 Malayalam Phoneme to IPA Mapping 99
4.4 Statistical Analysis of Malayalam Phonemes 100
 4.4.1 Malayalam Word and News Sentence Text Corpora 101
 4.4.2 Phoneme Statistical Analysis Results 102
4.5 Conclusion .. 111

5 Implementation of Keyword Spotting in Malayalam Speech using
Continuous Hidden Markov Modelling .. 113
 5.1 Introduction ... 113
 5.2 Data Preparation ... 116
 5.2.1 Data Preparation for KWS System Training 116
 5.2.2 Data Preparation for KWS System Evaluation 118
 5.3 Knowledge Base Generation for the Implementation of HMM Decoder . 120
 5.3.1 Knowledge Base Preparation Tool (KBPT-M) 121
 5.4 Architecture of the HMM based Automatic Speech Recognition (ASR)
 System ... 126
 5.4.1 MFCC Feature Extraction Process 127
 5.4.2 Development of Acoustic Models for HMM 129
 5.4.3 Generation of n-gram Language Models 136
 5.4.4 HMM Decoding and Word Lattice Generation 137
 5.5 Proposed Keyword Spotting System Architecture for Malayalam 140
 5.5.1 ASR based Keyword Spotting Technique 140
 5.5.2 Filler Model based Acoustic Approach for Keyword Spotting(FMA-KWS) ... 142
 5.6 Experimental Results .. 143
 5.7 Conclusion .. 147
6 Automatic Content based Classification of Speech Audio using Multiple Instance Learning Approach

6.1 Introduction ... 148

6.2 Feature Extraction from News Audios for Classification 150
 6.2.1 Mel Frequency Cepstral Coefficient (MFCC) Feature Extraction 150
 6.2.2 Perceptual Linear Prediction (PLP) Feature Extraction 151

6.3 Content based Audio Classification using MIL 152
 6.3.1 MIL for News Audio Classification 152
 6.3.2 mi-Graph based Classification Method 154
 6.3.3 mi-SVM based Classification Method 155

6.4 Simulation Experiments and Results 156

6.5 Conclusion ... 159

7 Effective Speaker Spotting based on Nonlinear Properties of Vocal Tract

7.1 Introduction ... 161

7.2 Segmentation of Vowel Units from Continues Speech 163

7.3 Nonlinear Dynamics of Vocal Tract 164
 7.3.1 Nonlinear Features used in Speaker Modelling 166
 7.3.2 Eigen Value of Reconstructed Phase Space 170
 7.3.3 Speaker Modelling based on Chaotic Properties of the Power Spectrum ... 172

7.4 Speaker Spotting Experiments based on Nonlinear Features and ANN . 179

7.5 Conclusion ... 181

8 Conclusions and Future Research Directions

8.1 Conclusion ... 182

8.2 Contributions ... 185

8.3 Future Direction .. 187

References .. 189
<table>
<thead>
<tr>
<th>Contents</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>212</td>
</tr>
<tr>
<td>Appendix B</td>
<td>214</td>
</tr>
<tr>
<td>List of Publications of the Author</td>
<td>218</td>
</tr>
</tbody>
</table>