CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>1-27</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1. Overview of nanocomposite materials</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Overview of graphene</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1. Properties of graphene</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2. Electrical and optical properties of graphene</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3. Graphene-based nanocomposites</td>
<td>8</td>
</tr>
<tr>
<td>1.3. Photocatalysis</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1. Water purification</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2. Hydrogen production</td>
<td>12</td>
</tr>
<tr>
<td>1.3.3. Air purification</td>
<td>14</td>
</tr>
<tr>
<td>1.3.4. Self-cleaning surfaces</td>
<td>14</td>
</tr>
<tr>
<td>1.3.5. Antimicrobial activity</td>
<td>15</td>
</tr>
<tr>
<td>1.3.6. Basic mechanism of photocatalysis</td>
<td>16</td>
</tr>
<tr>
<td>1.4. Motivation</td>
<td>18</td>
</tr>
<tr>
<td>1.5. Objectives</td>
<td>18</td>
</tr>
<tr>
<td>1.6. Overview of experimental work</td>
<td>19</td>
</tr>
<tr>
<td>1.7. References</td>
<td>21</td>
</tr>
</tbody>
</table>

2. Methods and experimental techniques | 28-62 |

2.1. Synthesis of graphene	28
2.1.1. Chemical methods	29
2.1.1.1. Modified hummers’ method	30
2.1.2. Electrochemical synthesis	31
2.2. Functionalisation of graphene with metal/metal oxide nanoparticles	33
2.2.1. Hydrothermal method	34
2.2.2. Electrochemical method	37
2.3. Materials and methods used	38
2.3.1. Materials used	38
2.3.2. Synthesis Graphene / BiVO₄/ TiO₂ nanocomposite	38
2.3.3. Synthesis of graphene-based tin oxide heterovalent heterojunction nanocomposites	38
2.3.4. Synthesis Graphene-ZnO, Graphene-copper oxide and of Graphene-tin oxide nanocomposites	39
2.3.5. Photocatalytic experiments	39
2.4. Experimental technique used	40
2.4.1. X-ray diffraction (XRD) 40
2.4.2. Electron microscopy 44
 2.4.2.1. Scanning electron microscopy (SEM) 45
 2.4.2.2. Transmission electron microscopy (TEM) 48
2.4.3. Raman spectroscopy 50
2.4.4. Ultraviolet-visible (UV-VIS) diffuse reflectance spectroscopy (DRS) 52
2.4.5. Photoluminescence (PL) spectroscopy 54
2.4.6. Photoreactors
 2.4.6.1. UV light photoreactor 56
 2.4.6.2. Visible light photoreactor 56
2.5. References 60

3. Graphene - BiVO$_4$- TiO$_2$ ternary nanocomposite 63-86
3.1. Introduction 63
3.2. Experimental details 64
 3.2.1. Preparation of RGO / BiVO$_4$ nanocomposite 64
 3.2.2. Preparation of RGO / BiVO$_4$/ TiO$_2$ nanocomposite 65
 3.2.3. Photocatalytic experiments 66
3.3. Results and discussion 66
 3.3.1. X-ray diffraction 66
 3.3.2. Scanning electron microscopy 69
 3.3.3. Transmission electron microscopy 71
 3.3.4. Raman spectroscopy 71
 3.3.5. UV-visible absorption spectroscopy and Tauc plot 73
 3.3.6. Photoluminescence spectroscopy 78
 3.3.7. Photocatalytic activity under visible light 79
 3.3.8. Mechanism of photocatalysis 82
3.4. Conclusion 83
3.5. References 85

4. Graphene - Tin oxide heterovalent heterojunction nanocomposite 87-101
 4.1. Introduction 87
 4.2. Experimental details 88
 4.2.1. Preparation of graphene-tin oxide nanocomposite 88
 4.2.2. Photocatalytic experiments 89
 4.3. Results and discussion 90
 4.3.1. X-ray diffraction 90
 4.3.2. Morphology - electron microscopy 91
 4.3.3. Raman spectroscopy 92
5. **Graphene - ZnO nanocomposite by ‘Two-Step Electrochemical Method’**

5.1. Introduction 102
5.2. Experimental details 104
5.2.1. Synthesis of Graphene and Graphene-ZnO nanocomposite by ‘Two-step electrochemical method’ 104
5.2.2. Photocatalytic experiments 105
5.3. Results and discussion 106
5.3.1. X-ray diffraction 106
5.3.2. Scanning electron microscopy 108
5.3.3. Transmission electron microscopy 108
5.3.4. Raman spectroscopy 109
5.3.5. UV-visible absorption spectroscopy and Tauc plot 111
5.3.6. Photoluminescence spectroscopy 112
5.3.7. Photocatalytic activity under UV light 114
5.3.8. Mechanism of photocatalysis 116
5.4. Conclusions 117
5.5. References 119

6. **Industrial scalability of ‘Two-Step Electrochemical Method’**

6.1. Introduction 122
6.2. Graphene – copper oxide nanocomposite 124
6.2.1. Experimental details 124
6.2.1.1. Preparation of graphene-copper oxide nanocomposite 124
6.2.1.2. Photocatalytic experiments 125
6.2.2. Results and discussion 125
6.2.2.1. X-ray diffraction 125
6.2.2.2. Scanning electron microscopy 126
6.2.2.3. Raman spectroscopy 127
6.2.2.4. UV-visible DRS spectroscopy and Tauc plot 128
6.2.2.5. Photocatalytic activity under visible light 128
6.2.2.6. Mechanism of photocatalysis 129
6.3. Graphene-tin oxide nanocomposite 131
 6.3.1. Experimental details 131
 6.3.1.1. Preparation of graphene-tin oxide nanocomposite 131
 6.3.1.2. Photocatalytic experiments 131
 6.3.2. Result and discussion 132
 6.3.2.1. X-ray diffraction 132
 6.3.2.2. Scanning electron microscopy 133
 6.3.2.3. Raman spectroscopy 134
 6.3.2.4. UV-visible DRS spectroscopy and Tauc plot 135
 6.3.2.5. Photocatalytic activity under visible light 136
 6.3.2.6. Mechanism of photocatalysis 136
 6.4. Future work on the chapter 138
 6.5. Conclusion 139
 6.6. References 141

7. Overall summary and future plan 142-147
 7.1. Overall summary 142
 7.2. Future plan 145