CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 INTRODUCTION
6.2 THE STUDY IN RETROSPECT
6.3 DISCUSSION BASED ON THE FINDINGS
6.4 TENABILITY OF HYPOTHESIS
6.5 IMPLICATIONS OF THE STUDY
6.6 SUGGESTIONS FOR FURTHER RESEARCH
6.1 INTRODUCTION

An educational research work has to exercise all care and caution in formulating its conclusions and arriving at any generalization on the basis of its data. Like interpretation of results, the formulation of conclusions and generalization also demand keen observation, wide outlook, and power of logical thinking. The present chapter comprises a brief summary of the procedure adopted and the conclusions and suggestions derived from the study. A preliminary analysis of the scores of the different variables was attempted and analyzed to answer the research questions posed and hypothesis formulated for the study. Tests of significance and analysis of covariances were applied for testing the difference between the means of contrasted independent groups with respect to the dependent variables selected for the study.

The study in retrospect is followed by a short description of the major findings of the study. The chapter concludes with a discussion of the recommendations and suggestions that can be derived from the present study for future research in the field of mathematical education.

6.2 THE STUDY IN RETROSPECT

The different aspects of the various stages of the present study summarized below under the following significant heads.

6.2.1 Statement of the Problem

The present study aims to develop a Peer Tutoring Model for teaching Mathematics at secondary level. So the study is entitled as
"PREPARATION AND TESTING OF A MODEL FOR PEER TUTORING IN MATHEMATICS AT THE SECONDARY LEVEL".

6.2.2 Variables of the Study

The variables of the study are (categorized as dependent and independent variables) as given below.

6.2.2.1 Dependent Variables

As the study intends to verify the influence of Peer Tutoring Model on the Achievement in Mathematics, Self-Concept, Achievement Motivation and Mathematics Interest are considered as the dependent variables in the study.

6.2.2.2 Independent Variables

The independent variables of the study are Peer Tutoring Strategy and Prevailing method of Teaching.

6.2.3 Hypotheses of the Study

Keeping in view the objectives of the study following hypothesis were formulated.

Hypothesis I: The performance of pupils in Mathematics taught by Peer Tutoring Model is significantly higher than that of pupils taught by the prevailing method.

Hypothesis II: The Self-Concept of pupils taught by Peer Tutoring Model is significantly higher than that of pupils taught by the prevailing method.
Hypothesis III: The Achievement Motivation of pupils taught by Peer Tutoring Model is significantly higher than that of pupils taught by the prevailing method.

Hypothesis IV: The Mathematics Interest of pupils taught by Peer Tutoring Model is significantly higher than that of pupils taught by the prevailing method.

Hypothesis V: There is no actual difference between the observed frequencies showing the opinion expressed by the tutors and expected frequencies derived on the basis of normal distribution.

Hypothesis VI: There is no actual difference between the observed frequencies showing the opinion expressed by the tutees and expected frequencies derived on the basis of normal distribution.

Hypothesis VII: There is no actual difference between the observed frequencies showing the opinion expressed by the experts and expected frequencies derived on the basis of normal distribution.

6.2.4 Objectives of the Study

The study is mainly focused on attaining the following objectives:

1. To prepare a model for peer tutoring in Mathematics at secondary level.
2. To compare the effectiveness of Peer Tutoring Model with the prevailing method on achievement in Mathematics of secondary school students.
3. To identify the skilled tutors among the secondary level students.
4. To test the socio-economic status of the secondary level students.
5. To study the feasibility of implementing Peer Tutoring Model at secondary level.
6. To find out the effect of Peer Tutoring Model on the self-concept, Mathematics interest and achievement motivation of secondary school students.
7. To analyze the opinion of secondary school teachers and experts regarding Peer Tutoring Model at secondary level.
8. To suggest remedial measures for successful implementation of the selected Peer Tutoring Model.

6.2.5 Sample Selected for the Study

The sample selected for the study comprised of 400 students of standard VIII from seven schools coming under the selected districts of Kerala - Thiruvananthapuram, Kollam and Pathanamthitta - and 50 teachers and experts from various institutions like Secondary schools, District Institute of Education and Training (DIET), State Council of Educational Research and Training (SCERT).

6.2.6 Data Collection Procedure

The data for the study were collected from students, teachers and experts in the field of education. The following tools were prepared to collect the data.
Chapter 6 Summary and Conclusions

1. Kerala Self-concept Scale
2. Kerala Scale of Achievement Motivation
3. Mathematics Interest Inventory
4. Multiple Intelligence Inventory
5. Strategy Evaluation Proforma (Peer Tutoring)
6. Format for Tutors’ / Tutees’ Diary
7. Participant Observation Schedule for Researchers/ Teachers
9. Lesson designs based on prevailing teaching method
10. Achievement test in Mathematics

The tools were administered to students in group situation. From teachers and experts the data were collected individually. The investigator obtained permission from the authorities of schools for collecting data from students and teachers. Experts were contacted by fixing prior appointments. The obtained data were scored as per the instruction in the respective manual of tools, and were consolidated for statistical analysis.

6.2.7 Major Findings of the Study

The study found that the achievement in Mathematics and many other variables can be enhanced through Peer Tutoring Model. The following findings that emerged from the analysis of the data obtained on comparison of various scores of the total sample confirm the aforesaid conclusion.
6.2.7.1 Effect of Peer Tutoring Model on Achievement in Mathematics

The Hypothesis I of the study "The Achievement of pupils in Mathematics taught by Peer Tutoring Model (PTM) is significantly higher than that of pupils taught by the prevailing method" was accepted based on the following findings.

(i) When the post-test scores of pupils in the experimental and control groups were compared, the difference between their means was found to be statistically significant (Critical ratio, CR = 8.74, P < 0.01). The experimental group was found to be better than the control group [Mean M_1 for experimental group = 29.6 and Mean M_2 for the control group = 21.2].

(ii) When the gain scores (post-test score – pre-test score) of pupils in the experimental and control group were compared, the difference between their means was found to be significant. (Critical ratio, CR= 20.83). The experimental group was found to be better than the control group [Mean M_1 for experimental group = 5.7, and Mean M_2 for the control group=1.1].

(iii) The analysis of covariance of pre- and post-test scores of pupils in the experimental and control groups showed significant difference between the two groups (Fyx for df 398 =51.83; P<0.01). The experimental group was found better than the control group in achievement ($M_{1yx}=29.8$ and $M_{2yx}= 20.1$)

(iv) The adjusted means ($M_{1yx}=29.8$ and $M_{2yx}=20.1$) for the post-test scores were tested for significance for df 397. The t-value
obtained was significant at 0.01 level (t =7.35; P<0.01). The significant t-value confirms that the two means differ considerably. The conclusion is that the experimental group outweighed the control group in performance.

Thus the Achievement of pupils in Mathematics taught by Peer Tutoring Model was significantly higher than that of pupils taught in the Prevailing Method.

6.2.7.2 Effect of Peer Tutoring Model on Self Concept

The Hypothesis II of the study "The self-concept of pupils taught by Peer Tutoring Model (PTM) is significantly higher than that of pupils taught by the prevailing method" was accepted based on the following findings.

(i) When the post-test scores of pupils in the experimental and control groups were compared, the difference between their means was found to be statistically significant (Critical ratio, CR = 3.73, P<0.01). The experimental group was found to be better than the control group. [Mean M₁ for experimental group = 77.15 and Mean M₂ for the control group = 71.5].

(ii) When the gain scores (post-test score – pre-test score) of pupils in the experimental and control group were compared, the difference between their means was found to be significant. (Critical ratio, CR = 14.08; P <0.01). The experimental group was found to be better than the control group [MeanM₁ for experimental group = 7.3, and Mean M₂ for the control group=2.7].
(iii) The analysis of covariance of pre- and post-test scores of pupils in the experimental and control groups showed significant difference between the two groups (Fyx for df 398 =27.1; P<0.01). The experimental group was found better than the control group in self-concept ($M_{1yX} = 77.6$ and $M_{2yX} = 70.42$).

(iv) The adjusted means ($M_{1yX} = 77.6$ and $M_{2yX} = 70.42$) for the post-test scores were tested for significance for df 397. The t-value obtained was significant at 0.01 level ($t=10.35; P<0.01$).

The significant t-value confirms that the two means differ considerably. The conclusion is that the experimental group outweighed the control group in self-concept.

Thus the self-concept of pupils taught by Peer Tutoring Model (PTM) was significantly higher than that of pupils taught in the prevailing method.

6.2.7.3 Effect of Peer Tutoring Model on Achievement Motivation

The Hypothesis III of the study "The Achievement Motivation of pupils in Mathematics taught by Peer Tutoring Model (PTM) is significantly higher than that of pupils taught by the prevailing method" was accepted based on the following findings.

(i) When the post-test scores of pupils in the experimental and control groups were compared, the difference between their means was found to be statistically significant (Critical ratio, CR = 3.77, P<0.01). The experimental group was found to be better than the control group [Mean M_1 for experimental group = 36.5 and Mean M_2 for the control group = 32.3].
When the gain scores (post-test score –pre-test score) of pupils in the experimental and control group were compared, the difference between their means was found to be significant. (Critical ratio, CR=23.50). The experimental group was found to be better than the control group [Mean M₁ for experimental group = 6.6, and Mean M₂ for the control group=1.7].

The analysis of covariance of pre- and post-test scores of pupils in the experimental and control groups showed significant difference between the two groups (Fyx for df 398 =64.07 ; P<0.01). The experimental group was found better than the control group in achievement (M₁ yX =36.8 and M₂ yX =20.09).

The adjusted means (M₁ yX =36.8 and M₂ yX =20.09) for the post-test scores were tested for significance for df 397. The t- value obtained was significant at 0.01 level (t =8.71; P<0.01). The significant t-value confirms that the two means differ considerably. The conclusion is that the experimental group outweighed the control group in performance.

Thus the Mathematics interest of pupils taught by Peer Tutoring Model (PTM) was significantly higher than that of pupils taught in the conventional method.

6.2.7.4 Effect of Peer Tutoring Model on Mathematical Interest

The Hypothesis IV of the study "The Mathematical Interest of pupils in Mathematics taught by Peer Tutoring Model (PTM) is significantly higher than that of pupils taught by the prevailing method" was accepted based on the following findings.
(i) When the post-test scores of pupils in the experimental and control groups were compared, the difference between their means was found to be statistically significant (Critical ratio, \(CR = 4.42, P<0.01 \)). The experimental group was found to be better than the control group [Mean \(M_1 \) for experimental group = 23.47 and Mean \(M_2 \) for the control group = 20.62].

(ii) When the gain scores (post-test score – pre-test score) of pupils in the experimental and control group were compared, the difference between their means was found to be significant (Critical ratio, \(CR= 13.5 \)). The experimental group was found to be better than the control group [Mean \(M_1 \) for experimental group = 5.2, and Mean \(M_2 \) for the control group=2.3].

(iii) The analysis of covariance of pre- and post-test scores of pupils in the experimental and control groups showed significant difference between the two groups (\(F_{yx} \) for df 398 = 45.55; \(P<0.01 \)). The experimental group was found better than the control group in achievement (\(M_{1yX} =24.2 \) and \(M_{2yX} =19.2 \)).

(iv) The adjusted means for the post-test scores were tested for significance for df= 397. The t-value obtained was significant at 0.01 level (\(t =15.2; P<0.01 \)). The significant t-value confirms that the two means differ considerably. The conclusion is that the experimental group outweighed the control group in performance.
Thus the achievement motivation of pupils taught by Peer Tutoring Model (PTM) was significantly higher than that of pupils taught in the Prevailing Method.

6.2.7.5 Evaluation of Peer Tutoring Model on the Basis of Tutors’ Diary

The Hypothesis V of the study "There is no actual difference between the observed frequencies showing the opinion expressed by the tutors and expected frequencies derived on the basis of normal distribution" was accepted based on the following findings.

The Chi-square value was computed with the data obtained from the tutors’ diary. The computed values of Chi-square for each day (6.4, 5.0, 5.8, 3.58, 6.9, 3.3, 5.8, 5.5, 3.4, 8.3) were less than the critical values of Chi-square (9.49). Thus the data from the tutors’ diary strongly supported the Peer Tutoring Model.

6.2.7.6 Evaluation of Peer Tutoring Model on the Basis of Tutees’ Diary

The Hypothesis VI of the study "There is no actual difference between the observed frequencies showing the opinion expressed by the tutees and expected frequencies derived on the basis of normal distribution", was accepted based on the following findings.

The Chi-square value was computed with the data obtained from the tutors’ diary. The computed values of Chi-square for each day (1.5, 2.38, 1.34, 2.30, 5.14, 3.25, 1.83, 2.98, 1.56, 2.55) were less than the critical values of Chi-square (9.49). Thus the data from the tutees’ diary strongly supported the Peer Tutoring Model.
Chapter 6 Summary and Conclusions

6.2.7.7 Evaluation of Peer Tutoring Model by Experts

The Hypothesis VI of the study "There is no actual difference between the observed frequencies showing the opinion expressed by the experts and expected frequencies derived on the basis of normal distribution" was accepted based on the following findings.

The Chi-square value was computed with the data obtained from the tutors’ diary. The computed values of Chi-square for each day (0.95, 1.75, 4.37, 6.83, 2.5, 2.66, 4.72, 4.22, 1.67, 5.87) were less than the critical values of Chi-square (9.49). Thus it can be concluded that the teachers and the experts strongly approved the importance of Peer tutoring method.

6.3 IMPLICATIONS OF THE STUDY

The implications of the study are not confined only to the students categorized as Tutee and Tutor. The teacher and the educational system also benefit from the study. Peer tutoring improves the personal relationship where individual differences become more acceptable. It enhances personal and social development. The student gets more frequent chances to respond, get instantaneous feedback, get encouraged and get more fun with his colleagues. All these factors make students more actively involved and more motivated in the classroom. Peer tutoring has a very good impact on the Tutors’ self-esteem and self-concept (Maheady, 1988). Tutors develop a sense of responsibility while helping other students.
Peer tutoring has a positive impact on the instructional performance in the classroom. It provides procedures for individualizing instruction, strategies to accommodate diverse learning groups, increased opportunity to observe and monitor individual student’s performance, and techniques for expanding one’s instructional repertoire. Peer tutoring provides a chance to teach new behavioural and social skills in addition to reducing inappropriate academic and interpersonal behaviour.

Peer instruction provide comprehensive set of strategies for enhancing student achievement, improving general classroom discipline, preventing academic failure, enhancing faculty’s instructional capacities, promoting educational reforms and introducing cost-effective instructional interventions.

The findings of the study show that Peer Tutoring Model is effective in enhancing achievement in Mathematics, self-concept, achievement motivation and mathematical interest of the pupils. This has important implication in teaching of Mathematics as it can be used to minimize the number of under-achievers, dropouts and failures by ensuring almost equal attainment on the part of the learners irrespective of their initial ability.

The Peer Tutoring Model helps the educational experts to plan instruction according to the varied needs of the pupils. The teachers should set their mind to make use of the alternative instructional materials to attain mastery criterion.
Chapter 6 Summary and Conclusions

The Peer Tutoring Model strategy provides opportunities for almost all students to attain mastery of content and getting a chance to pass successfully. By providing learning experiences continuously through co-operative group learning techniques, the effectiveness of outcomes might have been enhanced. Therefore it becomes necessary for the teachers to utilize Peer Tutoring Model for realizing affective outcomes of the learners.

The existing curriculum may not be able to cope with the proposed Peer Tutoring Model. So the curriculum must be modified accordingly. This model should be incorporated in the curriculum of pre-service teacher training programme. In-service teacher training should be provided at secondary level based on this strategy of instruction.

The effective implementation of Peer Tutoring Model requires preparation and careful procedures. The successful tutoring practices require certain qualitative determinants like the following.

1. harmonious relationship between the tutors and tutees
2. well organised and long term arrangements of tutoring groups
3. developing structural tutoring assignments that prescribe content sequence and procedures
4. matching of same gender students
5. avoiding comparison of tutors
6. gradually develop the scope for informal tutoring all the times, so it makes sense to take their lead and organize
7. improved interpersonal relationship where individual differences become more acceptable
8. tutors may develop a sense of responsibility while helping other students
9. more positive learning environment
10. level of engagements influences student motivation to achieve classroom goals
11. provides a chance to teach new behavioural and social skills in academic and interpersonal behaviour
12. create self-managed learners with high esteem

Challenges experienced by the tutors in the process of effective implementation of peer tutoring programme can be reduced through the creation of trust generating through;

1. reminding students of the importance of learning through small group
2. remaining neutral without displaying any vested interest
3. being clear about the ground rules for the peer group
4. making task expectations clear to the students
5. stressing the importance of active participation by each member
6. modeling warm personal regard and respect for every member
7. providing positive feedback when things go well
8. listening carefully
9. alleviating fears and anxiety among members
10. showing patience and care
11. giving importance to peer appraisal
12. identifying classroom connections
In some instances it is possible to have students rate their peers on the same rating device used by teachers.

A close scrutiny of the tutors’/tutees’ diary throw light into proper organisation of the information, enable them to design a number of strategies for constructing meaning and to construct meaning for themselves. Peer tutoring is based on a composing process because students in such groups compose and refine meaning, appreciate similarities and assume alternative points of view.

6.4 DISCUSSION BASED ON THE FINDINGS

Based on the above finding of the study the Peer Tutoring Model (PTM) has been found to be the most beneficial to learners in raising their achievement in Mathematics, self-concept, achievement motivation and mathematical interest.

These findings are supported by the results of earlier studies based on cognitive as well as personality variables. In contrast, some studies are against these findings. The findings regarding achievement variable are supported by results of earlier studies of Robinson et al. (2005), Greenwood (1991), Fantuzo (1989), Frunke (2001), Griffin & Griffin (2002), Maheady et al. (1988). In contrast, Fowler (1986) and Greenwood (1988), in their study, point out some limitations of peer tutoring.

The findings related to self-concept are supported by the studies of Schmelzer (1984), Hartup (1992), Fuch, Mathes and Martiniez (2002), Raschke et al. (1988) and Robinson et al. (2005).
In the case of Mathematics interest of pupils, studies conducted by Davis & Kevin (1987), Fuches, Hamlet & Duka (1987) and Hertz – Lazaro witz & Miller (1992) supported the present findings.

The findings regarding Achievement Motivation are supported by Fowler (1986) and Davis and Kevin (1987).

The findings of the study are in tune with the expectations of the investigator. Therefore, it is very clear that the appropriate use of peer tutoring model in the classroom has to facilitate learning and enhance the cognitive variables of the pupils. Since the model aims at providing such school and rewarding experience to majority of students and also provides opportunities for co-operative activities, it is very sure that its applications in the classroom would improve the personality variables of the pupils. Thus it can be concluded that planning and organization of time and resources and the effective procedures of the Peer Tutoring Model were the responsible factors for the present findings of the study. Exposure of students to a new, interesting and co-operative approach might have also been one of the reasons for these results.

In essence, Peer Tutoring Model is extremely simple to arrange. Any teacher can readily arrange for abler pupils to help less able ones within a single class. However peer tutoring can be used more systematically than it is at present. The findings suggest that tutoring may have more possibilities than was at first realized. Not only can it make learning more efficient and pleasurable for those who are taught (Tutees) but it can also increase significantly the learning of the tutors. Peer Tutoring Model could therefore usually become not only a technique to be used by professional teachers to multiply their effects,
but also a method by which those who act as tutors learn information and skills. More importantly it can be used as a vehicle for reflection about the cultural and structural significance of the central discipline being studied or indeed about the nature and purpose of education itself.

6.5 TENABILITY OF HYPOTHESES

Hypothesis I states that "The performance of pupils in Mathematics taught by Peer Tutoring Model (PTM) is significantly higher than that of pupils taught by the prevailing method". The Hypothesis is substantiated by finding out the Critical Ratio. The obtained critical values are greater than the respective table values at 0.01 level. Hence Hypothesis I was accepted.

Hypothesis II states that "The self-concept of pupils taught by peer Tutoring Model (PTM) is significantly higher than that of pupils taught in the prevailing method". The Hypothesis is substantiated by finding out the Critical Ratio. The obtained critical values are greater than the respective table values at 0.01 level. Hence the Null Hypothesis "The self-concept of pupils taught by peer Tutoring Model (PTM) is not significantly higher than that of pupils taught by the prevailing method" was rejected.

Hypothesis III states that "The Achievement Motivation of pupils taught by Peer Tutoring Model (PTM) is significantly higher than that of pupils taught by the prevailing method". The Hypothesis is substantiated by finding out the Critical Ratio. The obtained critical values are greater than the respective table values at 0.01 level. Hence the Null Hypothesis "The Achievement Motivation of pupils taught by
peer Tutoring Model (PTM) is not significantly higher than that of pupils taught by the prevailing method" was rejected.

Hypothesis IV states that "The Mathematical interest of pupils taught by Peer Tutoring Model (PTM) will be significantly higher than that of pupils taught by the prevailing method". The Hypothesis is substantiated by finding out the Critical Ratio. The obtained critical values are greater than the respective table values at 0.01 level. Hence the Null Hypothesis "The Mathematical Interest of pupils taught by peer Tutoring Model (PTM) is not significantly higher than that of pupils taught by the prevailing method" was rejected.

The Hypothesis V was, "There is no actual difference between the observed frequencies showing the opinion expressed by the tutors and expected frequencies derived on the basis of normal distribution". The hypothesis is substantiated by finding out the Chi-square values. The Chi-square value was computed with the data obtained from the tutors’ diary. The computed values of Chi-square for each day (6.4, 5.0, 5.8, 3.58, 6.9, 3.3, 5.8, 5.5, 3.4, 8.3) were less than the critical values of Chi-square (13.28). Hence the null hypothesis was accepted. Thus the hypothesis was also found tenable.

The Hypothesis VI was, "There is no actual difference between the observed frequencies showing the opinion expressed by the tutees and expected frequencies derived on the basis of normal distribution". The hypothesis is substantiated by finding out the Chi-square values. The Chi-square value was computed with the data obtained from the tutees diary. The computed values of Chi-square for each day (1.5, 2.38, 1.34, 2.30, 5.14, 3.25, 1.83, 2.98, 1.56, 2.55) were less than the
critical values of Chi-square (13.28). Hence the null hypothesis was accepted. Hence the hypothesis was also found tenable.

The Hypothesis VII was, "There is no actual difference between the observed frequencies showing the opinion expressed by the experts and expected frequencies derived on the basis of normal distribution". The hypothesis is substantiated by finding out the Chi-square values. The Chi-square value was computed with the data obtained from a check list. The computed values of Chi-square for each day (0.95, 1.75, 4.37, 6.83, 2.5, 2.66, 4.72, 4.22, 1.67, 5.87) were less than the critical values of Chi-square (13.28). Hence the null hypothesis was accepted. Thus the hypothesis was also found tenable.

6.6 SUGGESTIONS FOR FURTHER RESEARCH

The present study has certain limitations; due to the lack of time, size of the sample, diversity in age, subject, socio-economic status etc. Keeping in view the limitations of this study and the constraints under which it was conducted, the findings do not claim for wide generalization. It is therefore suggested that:

(i) The studies on a larger sample are needed to arrive at more reliable and precise results.

(ii) Studies can be conducted based on the achievement of learners of different age groups, subject areas, sex, socio-economic status and intelligence.

(iii) The study can be extended to other levels like lower primary, upper primary, higher secondary and university.

(iv) Studies based on individualized Peer Tutoring Model can be undertaken at various levels of learning.
(v) Similar investigations can be made at all subjects at high school and by widening the sample size; so that the study would help to have a clear picture of the effectiveness and adaptability of Peer Tutoring Model.

(vi) Effect of Peer Tutoring Model on some other cognitive and personality variables can be tested.

(vii) Since the present study gives importance only to the cognitive and affective variables, studies based on psychomotor outcomes can also be undertaken.

(viii) Peer groups can be facilitated through problem based learning by group processing and desired tutor competencies.

(ix) Peer tutoring can be conducted with the support of more advanced technological devices.

(x) Small group learning environment can be designed that supports creative thinking.

(xi) Multimedia KITS can be prepared and validated for constructive learning in groups.

(xii) Reflection in peer learning and professional development can be achieved through instruction, integrating computers and using media.

(xiii) Collective task can be turned into learning through creative critical thinking strategies.

(xiv) Comparative study of peer tutoring instructions can be undertaken.

(xv) Opportunity to initiate learning interactions can be thought of.
Education should not cease at any stage in a person’s life. However, the optimum conditions for effective development of the intellectual capacity, manual skills and social awareness of an individual include a young age in which literacy, numeracy and a generally accepted body of knowledge can be imparted in a particularly effective measure. Education stimulates and enables an individual to continue pursuit of knowledge, which mostly takes place during the day in specially constructed buildings with qualified teachers following structured methods and activities. Upon the education of the people of the country, the fate of this country depends.

Thus it becomes imperative to evolve innovative methods in the teaching-learning process. The present study tested the effectiveness of Peer Tutoring Model on achievement in Mathematics of students at secondary level and it proved to be potentially effective. The avenues are open and so the investigator concludes with the anticipation that the findings of the present investigation may be utilized and further studies may be conducted in this area to customize and generalize the findings of the present study.