Chapter 7.

Literature cited


Adriano DC (1986) Trace elements in the terrestrial environment Biogeochemistry, bioavailability, and risks of metals Springer-Verlag, New York


Amita DA, Verma S, Tare V, Bose D (2005) ln Oxidation of Cr (III) in tannery sludge for Cr (VI) Field observations and theoretical assessment J Hazard Mater 121 215–222


Anon (1974) Medical and Biological effects of pollutants chromium, National Academy Press, Washington


Bansal OP (1998) Heavy metal pollution of soils and plants due to sewage irrigation Ind J Environ Health 40. 51-52


Beveridge TJ, Murry RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis J Bacteriol 141 876-887


Birch L, Bachofen R (1990) Complexing agents from microorganisms Experientia 46 827-834


Bondarenko BM, Ctarodoobova AT (1981) Morphological and cultural changes in bacteria under the effect of chromium salts J Microbiol Epidemiol Immunobiol USSR. 4 99-100


Cheung KH, Gu JD (2003) Reduction of chromate (CrO₄⁻²) by an enrichment consortium and an isolate of marine sulphate-reducing bacteria. Chemosphere 52 1523–1529


Clark DP (1994) Chromate reductase activity of Enterobacter aerogenes is induced by nitrate. FEMS Microbiol Lette 122 233–238


Darrin M (1956) Chromium compounds - Their industrial use In Udy MJ (ed), Chromium Reinhold, New York, pp 251–262


Desai C, Jain K, Madamwar D (2008a) Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp isolated from Cr(VI) polluted industrial landfill Bioreour Technol 99 6059–6069


Felsenstein J (1993) PHYLIP (phylogenetic inference package), version 3.5c Department of Genome Sciences, University of Washington, Seattle, USA

Feng D, Aldrich C (2004) Adsorption of heavy metals by biomaterials derived from the marine alga Ectonia maxima Hydrometallurgy 73 1–10


Fredrickson JK, Kostanderthes HM, Lt SW, Plymale AE, Daly MJ (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Demococcus radiodurans R1 Appl Environ Microbiol 66 2006–2011


Gadd GM (1988) Accumulation of metals by microorganisms and algae In Rehm HJ, Reed G (eds), Biotechnology—a comprehensive treatise, special microbial processes, vol 6b, VCH, Verlagsgesell Schaft, Weinheim, Germany, pp 401–433

Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms Experienta 46 834–840


Guha H, Jayachandran K, Maurrasse F (2001) Kinetics of chromium (VI) reduction by a type strain *Shewanella alga* under different growth conditions Environ Pollut 115 209–218


Hankin L, Anagostakis S (1977) Solid media containing carboxy methyl cellulose to detect Cx cellulase activity of microorganisms J Gen Microbiol 98 109–115

Hartford WH (1979) Chromium compounds In Encyclopedia of Chemical Technology John Wiley & Sons, New York, pp 82–120


Hoyle B, Bevendorge TJ (1983) Binding of metallic ions to the outer membrane of *Escherichia coli* Appl Environ Microbiol 46 749–752


Huffman EWD, Allaway WH (1973) Chromium in plants Distribution in tissues, organelles, and extracts and availability of bean leaf chromium to animals J Agr Food Chem 21 982–986

Humphries AC, Nott KP, Hall LD, Macaskie LE (2005) Reduction of Cr(VI) by immobilized cells of *Desulfovibrio vulgaris* NCIMB 8303 and *Microbacterium* sp NCIMB 13776 Biotechnol Bioeng 90 589–596
IARC (1973) Some inorganic and organometallic compounds In IARC Monographs on the evaluation of carcinogenic risk of chemicals to humans, vol 2, International Agency for Research on Cancer, Lyon, France, pp 181


James BR, RJ Bartlett (1983a) Behavior of chromium in soils fate of organically complexed Cr(III) added to soil J Environ Qual 12 169–172


Jones JD, McGuckin WF (1964) Complexometric titration of calcium and magnesium by a semiautomated procedure Clinie Chem. 10 767–780


Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100 °C by Pyrobaculum islandicum Appl Environ Microbiol 66 1050–1056


Krauskopf KB (1979) Introduction to geochemistry McGraw Hill, New York, USA

Ksheminska H, Jaglarz A, Fedorovych D, Babyak L, Yanovych D, Kaszycki P, Koloczek H (2003) Bioremediation of chromium by the yeast Pichia guilbermondii toxicity and accumulation of Cr (III) and Cr(VI) and the influence of riboflavin on Cr tolerance Microbiol Res 158 59–67

Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase Appl Environ Microbiol 69 4390–4395


Lebedeva EV, Lyalikova NN (1979) Reduction of crocoite by Pseudomonas chromatophila sp Nov Mikrobiologiya 48 517–522

Lee KP, Ulrich CE, Gerl RG, Trochimowicz HJ (1989) Inhalation toxicity of chromium dioxide dust to rats after two years exposure Sci Tot Environ 86 83–108


Lorck H (1948) Production of hydrocyanic acid by bacteria Physiol Planta 1 142–146


Lovley DR (1994) Microbial reduction of iron, manganese, and other metals Adv Agronomy 54: 175–231


Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen nov sp nov, a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals Arch Microbiol 159 336–344

Lowry OH, Resebrough NJ, Farr AL (1951) Protein measurement with the folin-phenol reagent J Biol Chem 193 265–275

Macaskie LE, Dean ACR (1985) Strontium accumulation by immobilized cells of a Citrobacter sp Biotechnol Lette 7 457–462


Manivasagam N (1987) Industrial effluents origin, characteristics, effects, analysis and treatment Shakti publications, Coimbatore, India, pp 79–92


Mertz W (1969) Chromium occurrence and function in biological systems Physiol Rev 49 163–167


Mitra RS, Gray RH, Chin B, Bernstein IA (1975) Molecular mechanisms of accommodation in E coli to to toxic levels of Cd2+ J Bacteriol 121 1180–1188

Mukherjee SK, Asanuma S (1997) Al binding to the EPS and DNA of the Bradyrhizobial cells exposed to Al stress Kyushu Agric Res 60 71


Myers CR, Carstens BP, Antholine WE, Myers JM (2000) Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR–1 J Appl Microbiol 88 98–106


Remediation and beneficial re-use of contaminated sediments, vol 3, Batelle Press, Columbus, OH, USA, pp 103–111


Park D, Yun YS, Ahn CK, Park JM (2007) Kinetics of the reduction of hexavalent chromium with the brown seaweed *Ecklomia* biomass *Chemosphere* 66 939–946


Paulsen IT, Sliwinska MK, Nelissen B, Goffeau A, Saier MH (1998) Unified inventory of established and putative transporters encoded within the complete genome of *Saccharomyces cerevisiae* *FEBS Lett* 430 116–125


Pettrilli FL, Flora SD (1977) Toxicity and mutagenicity of hexavalent chromium on *Salmonella typhimurium* *Appl Environ Microbiol* 33 805–809

Pettrilli FL, Flora SD (1978) Metabolic deactivation of hexavalent chromium mutagenicity *Mutat Res* 54 139–147


Pikovaskya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. *Mikrobiol* 17 362–370


Romanenko VI, Korenkov VN (1977) A pure culture of bacterial cells assimilating chromates and bichromates as hydrogen acceptors when grown under anaerobic conditions. Mikrobiol 46 414–417


Sharma K (2002) Microbial Cr(VI) reduction role of electron donors, acceptors and mechanisms, with special emphasis on Clostridium spp Ph D thesis, University of Florida, USA


Shen H, Wang YT (1994) Biological reduction of chromium by E. coli J Environ Eng 120 560–572

Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium resistant bacteria Chemosphere 64 1036–1042

Shi X, Dalal NS (1990) On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium(V) species Arch Biochem. Biophys 277 342–350


Silverberg BA, Wong PTS, Chau YK (1977) Effect of tetramethyl lead on freshwater green-algae Arch Environ Con Tox 5 305–313


and antibiotic resistant bacteria in oral and intestinal floras of primates Antimicrob Agents Chemother 37 825–834


Suzuki T, Miyata N, Hortsu H, Kawai K, Tsakamizawa K, Tai Y, Okazaki M (1992) NAD(P)H dependent chromium (VI) reductase of Pseudomonas ambigua G-1 A Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III) J Bacteriol 174 5340–5345


Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors FEMS Microbiol Lette 162 193–198


Urone PF (1955) Stability of colorimetric reagent for chromium, S-diphenylcarbazides in various solvents Anal Chem. 27 1354–1355


Van de Peer Y, De Wachter R (1994) TREECON for Windows a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment Comput Appl Biosci 10 569–570


Volesky B (1990a) Biosorption and biosorbents In Volesky B (ed), Biosorption of heavy metals, CRC press, Boston, USA, pp 3–5
Volesky B (1990b) Removal and recovery of heavy metals by biosorption In Volesky B (ed), Biosorption of heavy metals, CRC press, Boston, USA, pp 7–43
Waalkes MP, Coogan TP, Barter RA 1992 Toxicological principles of metal carcinogenesis with special emphasis on cadmium Cnt Rev Toxicol 22 175–201


Xu XR, Li HB, Gu JD, Li XY (2005) Kinetics of the reduction of chromium (VI) by vitamin C. Environ Toxicol Chem. 24:1310–1314


