LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure-1</td>
<td>Dorsal view of Tetranychid mite</td>
<td>In between 58-59</td>
</tr>
<tr>
<td>Figure-3.1</td>
<td>Estimation of some nutrients (N, P, K, Na, Zn, Fe, Mn and Mg) and a metabolite (Chlorophyll) on six cultivars of tea leaves (mean of 45 observations)</td>
<td>73</td>
</tr>
<tr>
<td>Figure-5A.1</td>
<td>lxmx curve of O. coffeae reared on Assam type of tea leaves</td>
<td>85</td>
</tr>
<tr>
<td>Figure-5A.2</td>
<td>Daily age specific fecundity of O. coffeae reared on Assam type of tea leaves</td>
<td>86</td>
</tr>
<tr>
<td>Figure-5B.1</td>
<td>Determination of the intrinsic rate of natural increase (rm) of O. coffeae on Assam type of tea leaves</td>
<td>82</td>
</tr>
<tr>
<td>Figure-6A.1</td>
<td>lxmx curve of O. coffeae reared on China type of tea leaves</td>
<td>85</td>
</tr>
<tr>
<td>Figure-6A.2</td>
<td>Daily age specific fecundity of O. coffeae reared on China type of tea leaves</td>
<td>86</td>
</tr>
<tr>
<td>Figure-6B.1</td>
<td>Determination of the intrinsic rate of natural increase (rm) of O. coffeae on China type of tea leaves</td>
<td>88</td>
</tr>
<tr>
<td>Figure-10A.1</td>
<td>Effect of some chemicals on adult mortality of O. coffeae</td>
<td>106</td>
</tr>
<tr>
<td>Figure-10C.1</td>
<td>Interaction effect of some modern Chemicals and dosages on adult mortality of O. coffeae under laboratory conditions</td>
<td>108</td>
</tr>
</tbody>
</table>
Figure-10E.1 Interaction effect of Chemicals and durations on adult mortality of *O. coffeae* under laboratory conditions

Figure-11C.1 Interaction effect of Chemicals and dosages on egg mortality of *O. coffeae* under laboratory conditions

Figure-12A.1 Effect of different treatment schedules of Flufenoxuron 10 DC (Cascade) against *O. coffeae* infesting tea of Dooars, West Bengal, India during Sept.-Oct. 1997 (mean of two applications)

Figure-12B.1 Effect of different treatment schedules of Flufenoxuron 10 DC (Cascade) against *O. coffeae* infesting tea of Dooars, West Bengal, India during April.-May 1998 (mean of two applications)

Figure-13A.1 Effect of different treatment schedules of Azadirachtin-50,000 ppm (Neemazal-F 5%) against *O. coffeae* during May-June, 1996 at Kurseong, Darjeeling, West Bengal, India (mean of two applications)

Figure-13B.1 Effect of different treatment schedules of Azadirachtin-50,000 ppm (Neemazal-F 5%) against *O. coffeae* on tea during second season 1996 at Kurseong, Darjeeling, West Bengal, India (mean of three applications)
Figure-14.1 Bioefficacy of different treatment schedules of Azadirachtin-300 ppm (Bioneem 0.03%) against O. coffeae infesting tea during Sept.-Oct., 1995 at Kurseong, West Bengal, India (mean of three applications)

Figure-15.1 Effect of different treatment schedules of Azadirachtin-3000 ppm (Eco-neem 0.3%) against O. coffeae during April-May, 1995 at Kurseong, West Bengal, India (mean of three applications)

Figure-18A.1 Effect of different application schedules of Colloidal sulphur (Microsulf-52'S) in control of O. coffeae during Spring, 1996 at Dooars, West Bengal, India (mean of three applications)

Figure-19B.1 Effect of different application schedules of Colloidal sulphur (Microsulf-52'S) in control of O. coffeae during 'Post-monsoon' 1996 at Dooars, West Bengal, India (mean of three sprayings)

Figure-20B.1 Effect of different application schedules of Liquid sulphur (Microsulf-20 S) in control of O. coffeae during 'Pre-monsoon' 1995 at Dooars, West Bengal, India (mean of three sprayings)

Figure-21.1 Effect of different application schedules of Liquid sulphur (Microsulf-20 S) in control of O. coffeae during post-monsoon, 1995 at Dooars, West Bengal, India (mean of three sprayings)