1. INTRODUCTION

1.1. Diabetes – A Brief Overview
1.2. Study of Lifestyle Factors
1.3. Study of Biochemical Factors
1.4. Molecular Study
1.5. Study of Environmental Factor
1.6. Study of Enzymes
1.7. Study Group
1.8. Experimental Design
1.9. Experimental Procedure

2. REVIEW OF LITERATURE

2.1. Diabetes Mellitus
 2.1.1 Historical Background
 2.1.2. Epidemiology
 2.1.3. Type of Diabetes
 2.1.4. Clinical Features of Diabetes
 2.1.5. Pathophysiology of Type 2 Diabetes
 2.1.6. Diagnosis
 2.1.7. Complications of Diabetes
2.2. Diabetic Neuropathy
 2.2.1. Epidemiology
 2.2.2. Classification
 2.2.3. Clinical Features of Diabetic Neuropathy
 2.2.4. Pathogenesis
 2.2.5. Diagnosis

2.3. Diabetic Retinopathy
 2.3.1. Epidemiology
 2.3.2. Classification
 2.3.3. Clinical Features of Diabetic Retinopathy
 2.3.4. Pathogenesis
 2.3.5. Diagnosis

2.4. Predisposing Factors
 2.4.1. Lifestyle Factors
 2.4.2. Age
 2.4.3. Obesity
 2.4.4. Family History Of Diabetes

2.5. Biochemical Factors
 2.5.1. Blood Sugar Profile
 2.5.2. Kidney Profile
 2.5.3. Lipid Profile

2.6. Genetic Factors
 2.6.1. RAGE Gene
2.6.2. Role Of AGE

2.6.3. Role Of RAGE Gene Polymorphism

2.6.4. 2245 G/A And G82S Polymorphism Of RAGE Gene

2.6.4.1. 2245 G/A Polymorphism

2.6.4.1.2. G82S Polymorphism

2.7. Environmental Factor

2.7.1. Arsenic

2.7.2. Arsenic Affected Areas

2.7.3. Groundwater Arsenic Contamination

2.7.4. Clinical Manifestation

2.7.5. Diabetic Complications And Arsenic

2.8. Role of Enzymes

2.8.1. Introduction

2.8.1.1. Enzyme Aldose Reductase

2.8.1.1.1. Biochemistry

2.8.1.1.2. Physiology

2.8.1.1.3. Role In Disease

2.8.2. Role of Antioxidant Enzymes

2.8.2.1. Enzyme Super Oxide Dismutase (SOD)

2.8.2.1.1. Biochemistry

2.8.2.1.2. Physiology

2.8.2.1.3. Role In Disease

2.8.2.2. Enzyme Glutathione Peroxidase (GPx)
3. MATERIALS AND METHODS 61-112

3.1. Objective 62

3.2. Test System Used 62

3.3. Physical Examination 62

3.4. Laboratory Tests 63

3.4.1. Study Of Diabetic Parameters 63

3.4.1.1. Estimation Of Blood Glucose Level 63

3.4.1.1.1. Principle 63

3.4.1.1.2. Reagent Used 64

3.4.1.1.3. Procedure 64

3.4.1.1.4. Calculation 64

3.4.1.2. Estimation of Hba1c Level 65

3.4.1.2.1. Principle 65

3.4.1.2.2. Reagent Used 65

3.4.1.2.3. Procedure 66

3.4.1.3. Estimation of Urea Level 66

3.4.1.3.1. Principle 66

3.4.1.3.2. Reagent Used 66

3.4.1.3.3. Procedure 67

3.4.1.3.4. Calculation 67
3.4.1.4. Estimation of Creatinine Level
3.4.1.4.1. Principle
3.4.1.4.2. Reagent Used
3.4.1.4.3. Procedure
3.4.1.4.4. Calculation
3.4.1.5. Estimation of Triglyceride Level
3.4.1.5.1. Principle
3.4.1.5.2. Reagent Used
3.4.1.5.3. Procedure
3.4.1.5.4. Calculation
3.4.1.6. Estimation of Cholesterol Level
3.4.1.6.1. Principle
3.4.1.6.2. Reagent Used
3.4.1.6.3. Procedure
3.4.1.6.4. Calculation
3.5. Molecular Study
3.5.1. Study Of RAGE Gene Polymorphism
3.5.1.1. DNA Extraction From Blood
3.5.1.1.1. Composition Of Reagents
3.5.1.1.2. Preparation Of Reagents
3.5.1.1.3. Reaction Principle
3.5.1.1.4. Protocol Of DNA Extraction From Blood
3.5.1.2. Yield Gel For Assessing The Quality Of DNA Isolated From Blood

3.5.1.2.1. Composition Of Reagents

3.5.1.2.2. Reaction Principle

3.5.1.2.3. Protocol Of Yield Gel For Assessing The Quality Of DNA Isolated From Blood

3.5.1.3. Concentration And Quality Of DNA

3.5.1.4. Protocol Of Checking The Concentration And Quality Of DNA

3.5.1.5. DNA Amplification

3.5.1.5.1. Principle

3.5.1.6. Primer Design

3.5.2. 2245 G/A Polymorphism

3.5.2.1. The First PCR:

3.5.2.1.1. Composition Of Chemical Used

3.5.2.1.2. Protocol

3.5.2.2. The Second PCR:

3.5.2.2.1. Composition Of Chemical Used

3.5.2.2.2. Protocol

3.5.2.3. Analysis Of PCR Product By Gel Electrophoresis

3.5.2.3.1. Restriction Enzyme Digestion Of PCR Products

3.5.2.3.1.1. Principle

3.5.2.3.1.2. Digestion Of Amplified Product

3.5.2.3.1.3. Composition Of Chemical Used

3.5.2.3.1.4. Protocol
3.5.2.4. Analysis Of PCR-RFLP Product

3.5.3. Gly82Ser Polymorphism

3.5.3.1. The PCR

3.5.3.1.1. Composition Of Chemical Used

3.5.3.1.2. Protocol

3.5.3.2. Analysis Of PCR Product By Gel Electrophoresis

3.5.3.2.1. Restriction Enzyme Digestion Of PCR Products

3.5.3.2.1.1. Principle

3.5.3.2.1.2. Digestion Of Amplified Product

3.5.3.2.1.3. Composition Of Chemical Used

3.5.3.2.1.4. Protocol

3.5.3.3. Analysis Of PCR-RFLP Product

3.6. Environmental Study

3.6.1. Estimation of Arsenic Concentration

3.6.1.1. Reagents Used

3.6.1.2. Collection of Biosamples

3.6.1.3. Protocol of Arsenic Concentration Estimation

3.7. Study Of Enzymes

3.7.1. Estimation of Aldose Reductase Activity

3.7.1.1. Composition of Reagents

3.7.1.2. Reaction Principle

3.7.1.3. Protocol of Estimation Of Aldose Reductase Activity

3.7.2. Estimation of Superoxide Dismutase Activity
3.7.2.1. Composition of Reagents 100
3.7.2.2. Preparation of Reagents 100
3.7.2.3. Reaction Principle 101
3.7.2.4. Protocol of Estimation Of Superoxide Dismutase Activity 101

3.7.3. Estimation of Glutathione Peroxidase Activity 102
3.7.3.1. Composition of Reagents 102
3.7.3.2. Preparation of Reagents 103
3.7.3.3. Reaction Principle 103
3.7.3.4. Protocol of Estimation Of Glutathione Peroxidase Activity 104

3.8. Statistical Analysis 105
3.8.1. Student’s t Test 105
3.8.2. Pearson’s Chi- Squared Test 106
3.8.3. Pearson’s Correlation 108
3.8.4. Logistic Regression Theory 110

4. RESULTS 113-160
4.1. Detailed History Of The Studied Cases 114
Table. 4.1.1. Number Of Studied Cases According To Sex 114
Fig. 4.1.1. Number Of Studied Cases According To Sex 114
4.1.2. Distribution Of Cases According To Age And Sex 115
Table. 4.1.2.1 Distribution Of Healthy Cases According To Age And Sex 115
Table. 4.1.2.2. Distribution Of Neuropathy Cases According To Age And Sex 115
Table. 4.1.2.3. Distribution Of Retinopathy Cases According To Age And Sex 115
4.1. Number Of Male Cases According To Different Age Group

Table. 4.1.3. Distribution Of Studied Cases From Different Areas

Table. 4.1.4. Distribution Of Occupational Status Of Studied Cases

Table. 4.1.5. Distribution Of Education Of Studied Cases

Table. 4.1.6. Distribution Of Monthly Income Of Studied Cases

Table. 4.1.7. Distribution Of Duration Of Diabetes

4.2. Anthropometric Measurement Of The Studied Case

Table 4.2.1. Anthropometric Measurement Of The Study Group

4.3. Biochemical Status Of The Studied Cases

4.3.1. Blood Sugar Profile

Table. 4.3.1.1. Distribution Of Blood Sugar Levels
4.3.1.1. Distribution Of Blood Sugar Levels

4.3.2. Kidney Profile

Table 4.3.2.1. Distribution Of Different Parameters of Kidney Profile

Fig. 4.3.2.1. Distribution Of Different Parameters Of Kidney Profile

4.3.3. Lipid Profile

Table 4.3.3.1. Distribution Of Different Parameters Of Lipid Profile

Fig. 4.3.3.1. Distribution Of Different Parameters Of Lipid Profile

4.4. Molecular Study:

Table 4.4.1. Polymorphism Study of 2245 G/A Of RAGE Gene

Fig. 4.4.1. Polymorphism Study of 2245 G/A Of RAGE Gene

Table. 4.4.2. 2245 G/A Polymorphism According To HbA1C Values

Fig. 4.4.2. 2245 G/A Polymorphism According To HbA1C Values

Table. 4.4.3. Polymorphism Study of G82S of RAGE Gene

Fig. 4.4.3. Polymorphism Study of G82S of RAGE Gene

Table. 4.4.4. G82s Polymorphism According To HbA1C Values

Fig. 4.4.4. G82s Polymorphism According To HbA1C Values

4.5. Estimation Of Arsenic Concentration In Biosample-Hair

Table 4.5.1. Arsenic Level In Hair Of Studied Cases

Fig. 4.5.1. Arsenic Level In Hair Of Studied Cases

Table. 4.5.2. Arsenic Level In Hair Of Studied Cases According To Different Neuropathy Cases

Fig. 4.5.2. Arsenic Level In Hair Of Studied Cases According To Different Neuropathy Cases
4.6. Aldose Reductase Activity In The Studied Population

Table. 4.6.1. Aldose Reductase Activity In The Studied Cases

Fig. 4.6.1. Aldose Reductase Activity In The Studied Cases

Table. 4.6.2. Aldose Reductase Activity In The Studied Cases According To Different Neuropathy Cases

Fig. 4.6.2. Aldose Reductase Activity In The Studied Cases According To Different Neuropathy Cases

4.7. Super Oxide Dismutase Activity In The Studied Population

Table. 4.7.1. Super Oxide Dismutase Activity In The Studied Case

Fig. 4.7.1. Super Oxide Dismutase Activity In The Studied Case

Table. 4.7.2. Super Oxide Dismutase Activity In The Studied Cases According To Different Neuropathy Cases

Fig. 4.7.2. Super Oxide Dismutase Activity In The Studied Cases According To Different Neuropathy Cases

4.8. Glutathione Peroxidase Activity In The Studied Population

Table. 4.8.1. Glutathione Peroxidase Activity In The Studied Case

Fig. 4.8.1. Glutathione Peroxidase Activity In The Studied Case

Table. 4.8.2. Glutathione Peroxidase Activity In The Studied Cases According To Different Neuropathy Cases

Fig. 4.8.2. Glutathione Peroxidase Activity In The Studied Cases According To Different Neuropathy Cases

4.9. Correlations: BMI, Fasting Sugar, Post Prandial Sugar, HbA1C, Urea, Creatinine, Triglyceride, Cholesterol, Arsenic, Aldose Reductase, SOD And GPx

4.9.1. In Diabetic Neuropathy Cases

4.9.1.1. Regression
5. DISCUSSIONS

5.1. Discussion – General

5.2. Detailed History of Studied Cases

5.2.1. Gender

5.2.2. Areas

5.2.3. Educational Status

5.2.4. Monthly Income

5.2.5. Duration Of Disease

5.2.6. Related Complications Like Hypertension

5.3. Anthropometric Measurement

5.3.1. BMI

5.4. Biochemical Factors

5.4.1. Blood Sugar Profile
5.4.2. Kidney Profile

5.4.3. Lipid Profile

5.6. Molecular Study

5.6.1. RAGE Gene

5.6.1.1. Polymorphism Study Of 2245 G/A Of RAGE Gene

5.6.1.2. Polymorphism Study Of Gly82Ser Of RAGE Gene

5.7. Environmental Factor

5.7.1. Arsenic Level

5.8. Study of Enzymes

5.8.1. Aldose Reductase Activity In The Studied Cases

5.8.1.1. Introduction

5.8.1.2. Aldose Reductase Activity And Diabetes Mellitus

5.8.2. Super Oxide Dismutase Activity In The Studied Case

5.8.2.1. Introduction

5.8.2.2. Super Oxide Dismutase Activity And Diabetes Mellitus

5.8.3. Glutathione Peroxidase Activity In The Studied Case

5.8.3.1. Introduction

5.8.3.2. Glutathione Peroxidase Activity And Diabetes Mellitus

6. SUMMARY

6.1. Introduction

6.2. Objectives of the Study

6.3. Study Group
6.4. Description of Experiments

6.4.1. Detailed History Taken From Study Group
6.4.2. Collection of Blood Sample
6.4.3. Molecular Study Of RAGE Gene
 6.4.3.1. 2245 G/A Polymorphism Study
 6.4.3.2. Gly 82 Ser Polymorphism Study
6.4.4. Study of Arsenic Level
 6.4.4.1. Collection of Hair Sample
 6.4.4.2. Estimation of Arsenic
6.4.5. Study of Enzymes
 6.4.5.1. Estimation of Aldose Reductase Activity
 6.4.5.2. Estimation of Superoxide Dismutase
 6.4.5.3. Estimation of Glutathione Peroxidase
6.4.6. Statistical Analysis

6.5. Observation of the Study Group

6.5.1. Detailed History of the Study Group
6.5.2. Biochemical Factors
 6.5.2.1. Blood Sugar Profile
 6.5.2.2. Kidney Profile
 6.5.2.3. Lipid Profile
6.5.3. Molecular Study
 6.5.3.1. 2245 G/A Polymorphism
6.5.3.2. Gly82Ser Polymorphism 197

6.5.4. Environmental Factor 197

6.5.5. Study of Enzymes 198

6.5.5.1. Aldose Reductase Activity in the Studied Cases 198

6.5.5.2. Super Oxide Dismutase Activity in the Studied Case 198

6.5.5.3. Glutathione Peroxidase Activity in the Studied Case 198

6.6. Conclusion 199

7. REFERENCES 204-258

8. PUBLICATIONS