CONTENTS

STATEMENT iv
CERTIFICATE v
ACKNOWLEDGEMENTS vi
LIST OF PUBLICATIONS viii
SYNOPSIS x

PART A

CYCLOADDITION AND OXIDATIVE ADDITION REACTIONS OF PHOSPHORUS(III) COMPOUNDS

Chapter 1 **INTRODUCTION** 1

1.1 Reaction of PIII compounds with dialkyl azodicarboxylates 3
1.11 Synthetic applications of Mitsunobu reaction 8
1.2 Dipolar cycloaddition reactions of PIII compounds 11
1.3 Pentacoordinate phosphorus compounds 13
1.31 General Introduction 13
1.32 Reaction of PIII compounds with o-chloranil –
Formation of pentacoordinate phosphorus compounds 17
1.4 Hexacoordinate phosphorus compounds 22
1.41 General Introduction 22
1.42 Anionic and cationic hexacoordinate phosphorus compounds 22
1.43 Neutral hexacoordinate phosphorus compounds 24
1.5 Organophosphates and their involvement in hydrogen bonding 30

Objectives of the present work 34

Chapter 2 **RESULTS AND DISCUSSION** 35

2.1 Synthesis of phosphorus(III) compounds 35
2.2 Reactions of phosphorus(III) compounds with dialkyl azodicarboxylates and o-chloranil 39
2.21 Formation of pentacoordinate phosphorus compounds 39
2.22 Formation of tetracoordinate phosphorus compounds with unusual structures 53
2.23 Formation of hexacoordinate phosphorus compounds 58
2.24 Solution state NMR spectra of hexacoordinate compounds 70
2.25 Theoretical calculations 74
2.3 Involvement of cyclic phosphates in hydrogen bonding 75
2.4 Summary 82
Chapter 3 EXPERIMENTAL SECTION

3.1 Preparation of P(III) derivatives
3.2 Reactions of phosphorus(III) compounds with D1AD/ DEAD and o-chloranil: Reactivity of the products
 3.21 Formation of pentacordinate phosphorus compounds
 3.22 Formation of tetracordinate phosphorus compounds
 3.23 Formation of hexacordinate phosphorus compounds
3.3 Synthesis of phosphate salts
3.4 X-ray crystallography

REFERENCES

PART B

(I) PHOSPHONATES - SYNTHESIS AND UTILITY
(II) SYNTHESIS OF ANTHRACENE DERIVATIVES WITH EXTENDED CONJUGATION

Chapter 4 INTRODUCTION

4.1 General Introduction
4.2 Synthesis of α-bromo- and α-chloro-phosphonates
 4.21 Synthesis of α-bromophosphonates
 4.22 Synthesis of α-chlorophosphonates
4.3 Synthetic utility of phosphonates
4.4 Synthesis of anthracene derivatives with extended conjugation
4.5 Addition of phosphonates to α,β-unsaturated esters–
 Formation of cyclopropyl P substituted phosphonate derivatives

Objectives of the present work

Chapter 5 RESULTS AND DISCUSSION

5.1 Synthesis of phosphites
5.2 Synthesis of phosphonates
 5.21 Synthesis of α-hydroxyphosphonates
 5.22 Synthesis of bromophosphonates
5.3 Synthetic utility of phosphonates
5.4 Sonogashira coupling of compound 17 with terminal alkynes
 5.41 Fluorescence spectroscopy of anthracenyl derivatives
5.5 Synthesis of cyclopropyl phosphonates from α-chloro/bromo Phosphonates
5.6 Synthetic utility of Mitsunobu reaction in phosphonate chemistry
Chapter 6 EXPERIMENTAL SECTION

6.1 Synthesis of α-hydroxyphosphonates
6.2 Synthesis and utility of bromophosphonates
 6.21 Synthesis of bromophosphonates
 6.22 HWE reaction of the bromophosphonate 7 with aldehydes
 6.23 Sonogashira coupling of compound 17 with terminal alkynes
6.3 Synthesis of cyclopropyl phosphonates
6.4 Alkylation of adenine using Mitsunobu reaction
6.5 X-ray crystallography

REFERENCES

APPENDIX 1 CCDC Reference codes/ publication numbers and atomic coordinates for X-ray structures reported in this thesis

I-VII