Table of Contents

<table>
<thead>
<tr>
<th>Chapter Number</th>
<th>Details</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION AND OUTLINE</td>
<td>1-17</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction to Bayesian Inference</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Prior Distribution</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Posterior Distribution</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Loss Functions</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Bayes Estimator</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Life Testing Experiments and Reliability Analysis</td>
<td>9</td>
</tr>
<tr>
<td>1.7</td>
<td>Literature Review</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>Present Work</td>
<td>13</td>
</tr>
<tr>
<td>2.</td>
<td>THE DOUBLE PRIOR SELECTION FOR THE PARAMETER OF EXPONENTIAL LIFE TIME MODEL UNDER TYPE II CENSORING</td>
<td>18-43</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>The posterior distribution of θ under different prior distribution</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Exponential and Gamma distributions as a double priors</td>
<td>21</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Gamma and chi-square distributions as double prior</td>
<td>22</td>
</tr>
<tr>
<td>2.2.3</td>
<td>chi-square and exponential distribution as double priors</td>
<td>23</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Only single gamma $G(a_4, b_4)$ prior distribution for θ</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Bayes estimator of θ and reliability $R_t(\theta)$ at time t</td>
<td>25</td>
</tr>
<tr>
<td>2.3.1</td>
<td>The Bayes estimator of θ and $R_t(\theta)$ at time t</td>
<td>25</td>
</tr>
</tbody>
</table>
2.3.2 (1-α)100% equal tail credible interval
2.3.3 Posterior distribution of $R_i(t)$
2.4 Bayes predictive estimator and equal tail credible interval for a future observation.
2.5 Prediction of the remaining (n-r) failure times truncated at $x_{(r)}$ and their equal tail intervals.
2.6 A real life example
2.7 Simulation Study
2.8 Conclusions

3. Inference under Progressive Interval Censoring for Exponential Competing Risk Failure Model

3.1 Introduction
3.2 The posterior distribution of θ under different prior distributions
 3.2.1 General non informative and Inverted gamma priors
 3.2.2 Inverted gamma prior only
3.3 Bayes estimator of θ and reliability $R(t(\theta))$ at time t
 3.3.1 Bayes equal tail credible interval for θ and $R(t)$
3.4 Bayes predictive estimator and (1-α)100% equal tail credible interval for a future observation
3.5 Bayes predictive estimator for the remaining (n-r) order statistics truncated at $X(r)$ and their (1-α)100% equal tail credible interval
3.6 A real life example
3.7 Simulation Study
4. THE DOUBLE PRIOR SELECTION FOR THE PARAMETER OF POWER FUNCTION DISTRIBUTION UNDER TYPE-II CENSORING

4.1 Introduction
4.2 The posterior distribution of θ under different prior distributions
4.2.1 General Non-informative and Gamma Priors
4.2.2 The posterior Distribution of θ
4.3 Bayes estimate of θ and reliability $R(t)$ at time t
 4.3.1 Bayes estimate of θ under squared error loss function
 4.3.2 Bayes equal tail credible interval for θ
4.4 Bayes predictive estimator and $(1 - \gamma)100\%$ equal tail credible interval for future observation
4.5 Bayes predictive estimator for the remaining $(n - r)$ order statistics truncated at $x_{(r)}$ and their $(1 - \gamma)100\%$ equal tailcredible interval
4.6 Simulation Study
4.7 Conclusions

5. THE DOUBLE PRIOR SELECTION FOR THE PARAMETER OF PARETO DISTRIBUTION UNDER TYPE-II CENSORING

5.1 Introduction
5.2 The Posterior distribution of θ under different prior distributions
 5.2.1 Jeffrey’s and gamma double prior

3.8 Conclusions
5.2.2 Jeffrey’s and chi-square double prior 87
5.2.3 Gamma and chi-square double prior 87
5.2.4 Only gamma prior 88
5.3 Bayes estimate of \(\theta \) and reliability \(R(t) \) at time \(t \) 89
 5.3.1A Bayes estimate of \(\theta \) under squared error loss function 89
5.3.2 Bayes equal tail credible interval for \(\theta \) 89
5.3.3 Bayes equal tail credible interval for \(R(t) \) 90
5.4 Bayes predictive estimator and \((1 - \gamma)100\%\) equal tail credible interval for future observation 91
5.5 Bayes predictive estimator for the remaining \((n-r)\) order statistics truncated at \(x_{(r)} \) and their \((1-\gamma)100\%\) equal tail credible interval 94
5.6 Simulation study 97
5.7 Conclusion 99

6. THE DOUBLE PRIOR SELECTION FOR THE PARAMETERS OF INVERTED EXPONENTIAL DISTRIBUTION UNDER TYPE-II CENSORING 101-116

6.1 Introduction 101
6.2 The Posterior distribution of \(\theta \) under different double and single priors 102
 6.2.1 Inverted gamma and Gumble type-II double prior 103
 6.2.2 Inverted gamma \(ig(a,b) \) and Jeffrey’s double prior 104
 6.2.3 Gumble type-II and Jeffery’s double prior 104
 6.2.4 Only inverted gamma prior 105
6.3 Bayes estimate of \(\theta \) and reliability \(R(t) \) at time \(t \) and their credible intervals 106
6.3.1 Bayes estimate of θ and $R(t)$
6.3.2 Bayes equal tail credible interval for θ and $R(t)$
6.4 Bayes predictive estimation and its equal tail credible interval for future observation
6.5 Bayes predictive estimator for the remaining $(n-r)$ order statistics truncated at $x_{(r)}$ and their credible intervals
6.6 Simulation study
6.7 Conclusions

7. Reference

X