CONTENT

ACKNOWLEDGEMENT

ABBREVIATIONS

PREFACE

CHAPTER – I
YEAST INTRODUCTION 1 - 11

1.1. Yeast *Saccharomyces cerevisiae* as a model system 1
1.2  *Storage Lipids* 1
1.3  Lipid droplets (LDs) – Overview 3
1.4  Herbal medicine 7

AIM AND SCOPE OF THE STUDY 12

Chapter II
Antihyperlipidemic activity of *Cassia auriculata* flower extract in oleic acid induced hyperlipidemia in *Saccharomyces cerevisiae*

1.  Abstract 13
2.  Introduction 14
3.  Materials and methods 15
   3.1  Materials 15
   3.2  Extraction and fractionation 15
   3.3  Yeast strains and growth condition 16
   3.4  Lipid extraction and separation by TLC 16
   3.5  RNA isolation and RT-PCR 17
   3.6  Analysis of LD formation in BODIPY stain 17
   3.7  Statistics 17
4.  Results
   4.1  Effect of oleic acid to induce lipid accumulation 19
4.2 Effect of atorvastatin on hyperlipidemia induced yeast cells

4.3 Effect of CAF (chloroform extract) on hyperlipidemia induced yeast cells

4.4 Effect of CAF (acetone extract) on hyperlipidemia induced yeast cells

4.5 Effect of CAF (ethyl acetate extract) on hyperlipidemia induced yeast cells

4.6 Effect of CAF (ethanolic extract) on hyperlipidemia induced yeast cells

4.7 Expression of neutral lipid genes in hyperlipidemia-induced yeast cells treated with CAF (ethanolic extract)

4.8 Lipid droplet staining by laser scanning fluorescent microscope

5. Discussion

Summary

Chapter III

Animal Introduction

1.1 Cholesterol

1.2 Cholesterol Metabolism and Homeostatis
  1.2.1 Cholesterol regulation
  1.2.2 Cholesterol excretion
  1.2.3 Reverse cholesterol transport and HDL metabolism

1.3 ATP Binding Cassette (ABC) Transporters

1.4 Bile Acid Metabolism
  1.4.1 Regulation of bile acid synthesis

1.5 Lipoproteins

1.6 Epidemiology of dyslipidemia in India
  1.6.1 Lipid trends in India
  1.6.2 Epidemiology reports in India
  1.6.3 Epidemiology reports in Tamilnadu
Chapter IV

*Cassia auriculata* flower extract attenuates hyperlipidemia in male Wistar rats by regulating the hepatic cholesterol metabolism

1. Abstract 55
2. Introduction 56
3. Materials and Methods 57
   3.1 Chemicals 57
   3.2 Preparation of ethanolic extract of *C. auriculata* flower 57
   3.3 Induction of Hyperlipidemia 58
   3.4 Biochemical analysis 59
   3.5 Preparation of liver samples 60
   3.6 Analysis of mRNA expression of hepatic genes 60
   3.7 Western Blotting analysis 60
   3.8 Histo-pathological studies 61
   3.9 Statistical analysis 61
4. Results 63
   4.1 Effect of Et-CAF extract on serum biochemical parameters 63
   4.2 Effect of Et-CAF on the hepatic mRNA expression of lipogenic genes 64
   4.3 Effect of Et-CAF on the mRNA and protein expression for the cholesterol biosynthetic genes in rat liver 65
   4.4 Effect of Et-CAF on the gene and protein expression of bile acid synthesizing gene in the rat liver 67
   4.5 Effect of Et-CAF on the gene and protein expression of ABCA1 (involved in cholesterol efflux) in the liver 68
Chapter V

Identification and isolation of active constituents present in the Cassia auriculata and their potential to treat Triton WR – 1339 induced hyperlipidemia in male Wistar rats

1. Abstract
2. Introduction
3. Materials and methods
   3.1. HPLC Analysis
      3.1.1. Reagents and chemicals
      3.1.2. Chemicals
   3.2. Induction of hyperlipidemia
      3.2.1. Experimental design
      3.2.2. Preparation of liver samples
   3.3. Biochemical analysis
   3.4. Analysis of mRNA expression of hepatic genes
      3.4.1. RNA isolation and RT-PCR
      3.4.2. Western Blotting analysis
   3.5. Hepatic histological analysis
   3.6. Statistical analysis
4. Results
   4.1 Analysis of Active principle by HPLC
   4.2 Effect of rutin on serum biochemical parameters
4.3 Effect of rutin on the hepatic mRNA expression of lipogenic genes
88
4.4 Effect of rutin on the hepatic expression of cholesterol biosynthetic genes
89
4.5 Effect of rutin on the expression of bile acid synthesizing genes in the liver
91
4.6 Effect of rutin on the gene expression of ABCA1 (involved in cholesterol efflux) in the liver
92
4.7 Effect of rutin on the protein expression for the cholesterol biosynthetic genes in rat liver
93
4.8 Effect of rutin on the protein expression of ABCA1 (involved in cholesterol efflux) in the liver
95
4.9 Effect of rutin on liver histopathology of Triton induced hyperlipidemic condition
96

5. Discussion
97

SUMMARY
100

SUMMARY AND CONCLUSION
101

BIBLIOGRAPHY
104

PUBLICATIONS