CHAPTER – VII

DIRECTED EDGE - GRACEFUL LABELING OF CYCLE RELATED GRAPHS

Introduction 7.1

In this chapter, we study the directed edge - graceful labeling of cycle related graphs such as,

\[C_n \circ K_m \]
\[C \circ K \]
\[C \circ K \]

Flag \(Fl_{2n} \)

D

Tortoise

Friendship graph

Definition 7.2

The Corona \(G_1 \circ G_2 \) of two graphs \(G_1 \) and \(G_2 \) is the graph \(G \) obtained by taking one copy of \(G_1 \) (which has \(p_1 \) points) and \(p_1 \) copies of \(G_2 \), and then joining the \(i^{th} \) point of \(G_1 \) to every point in the \(i^{th} \) copy of \(G_2 \).

Theorem 7.3

The graph \(C_n \circ \overline{K}_m \) (\(m \geq 2, n \geq 3 \)) is directed edge - graceful for all \(n \) odd and \(m \) even.
Proof

Let $V = \{v_1, v_2, ..., v_n, v_{11}, v_{12}, ..., v_{1m}, v_{21}, v_{22}, ..., v_{2m}, ..., v_{n1}, v_{n2}, ..., v_{nm}\}$ be the set of vertices. Now, we orient the edges of $C_n \odot K_m$ such that the arc set A is given by

$$A = \{v_{2i+1}, v_{2i}\}, 1 \leq i \leq \frac{n-1}{2} \cup \{v_{2i+1}, v_{2i}\}, 1 \leq i \leq \frac{n-1}{2} \cup \{(v_n, v_1)\} \cup \{(v_i, v_{ij})\}, 1 \leq i \leq n, 1 \leq j \leq m\}.$$

The edges and their orientation of $C_n \odot K_m$ are as in Fig. 7.1:

![Fig. 7.1: $C_n \odot K_m$ with orientation](image)

We now label the arcs of A as follows:

$$f((v_{2i+1}, v_{2i})) = i \quad 1 \leq i \leq \frac{n-1}{2}$$

$$f((v_{2i+1}, v_{2i})) = n (m+1) - 1 + i \quad 1 \leq i \leq \frac{n-1}{2}$$

$$f(v, v_{n1}) = n(m + 1)$$
The computed values of $f^+ (v_i)$, $f^+ (v_{ij})$ and $f^- (v_i)$, $f^- (v_{ij})$ are given below:

$$f^+ (v_1) = n(m + 1)$$

$$f^- (v_1) = - (nm + n) \frac{m}{2} + 1 \frac{n - 1}{2}$$

$$f^+ (v_2) = (nm + n) \frac{n - 1}{2} - 1 + 2i \quad 1 \leq i \leq \frac{n - 1}{2}$$

$$f^- (v_2) = - \frac{m}{2} (nm + n) \quad 1 \leq i \leq \frac{n - 1}{2}$$

$$f^+ (v_{2,i+1}) = 0 \quad 1 \leq i \leq \frac{n - 1}{2}$$

$$f^- (v_{2,i+1}) = - (nm + n) \frac{m}{2} + 1 \frac{n - 1}{2} + 2i \quad 1 \leq i \leq \frac{n - 1}{2}$$

$$f^+ (v_{(2j-1)i}) = \frac{n - 1}{2} + \frac{m}{2} (i - 1) + j \quad 1 \leq i \leq n, 1 \leq j \leq m$$

$$f^- (v_{(2j-1)i}) = 0$$

$$f^+ (v_{(2j)i}) = n(m + 1)$$

$$f^- (v_{(2j)i}) = - \frac{n - 1}{2}$$

$$f^- (v_{(2j)i}) = 0, -$$
Then the induced vertex labels are:

Case (i) \(\frac{n-1}{2} \) is even

\[
g(v_{i-1, j}) = \frac{n-1}{2} + \frac{m}{2}(i-1) + j \quad 1 \leq i \leq n, 1 \leq j \leq \frac{m}{2}
\]

\[
g(v_{i, j}) = n \left(m + 1 - \frac{n-1}{2} \right) - \frac{m}{2}(i-1) - j \quad 1 \leq i \leq n, 1 \leq j \leq \frac{m}{2}
\]

\[
g(v_{2i-1}) = \frac{n-1}{2} + 2 - 2i \quad 1 \leq i \leq \frac{n+3}{4}
\]

\[
g(v_{2i}) = n(m+1) - \frac{n-1}{2} - 1 + 2i \quad 1 \leq i \leq \frac{n-1}{4}
\]

\[
g(v_{n-1, i-1}) = \frac{2i}{2} - 1 \quad 1 \leq i \leq \frac{n-1}{4}
\]

\[
g(v_{n+1, i-1}) = n(m+1) - 2i \quad 1 \leq i \leq \frac{n-1}{4}
\]

Case (ii) \(\frac{n-1}{2} \) is odd.

\[
g(v_{i, (2j-1)}) = \frac{n-1}{2} + \frac{m}{2}(i-1) + j \quad 1 \leq i \leq n, 1 \leq j \leq \frac{m}{2}
\]

\[
g(v_{i, (2j)}) = n \left(m + 1 - \frac{n-1}{2} \right) - \frac{m}{2}(i-1) - j \quad 1 \leq i \leq n, 1 \leq j \leq \frac{m}{2}
\]

\[
g(v_{2i-1}) = \frac{n-1}{2} + 2 - 2i \quad 1 \leq i \leq \frac{n+1}{4}
\]

\[
g(v_{2i}) = n(m+1) - \frac{n-1}{2} - 1 + 2i \quad 1 \leq i \leq \frac{n-3}{4}
\]
Clearly, it follows that all the vertex labels are distinct and ranges between 0 to \(p - 1 \). Thus, \(g \) is a bijection. Hence, the graph \(C_n \circ K_m \) (\(m \geq 2, n \geq 3 \)) is directed edge - graceful for all \(n \) odd and \(m \) even. The directed edge - graceful labeling of \(C_5 \circ K_8 \), \(C_7 \circ K_8 \), \(C_9 \circ K_6 \) and \(C_{11} \circ K_4 \) are given in Fig. 7.2, Fig. 7.3, Fig. 7.4 and Fig. 7.5 respectively.

\[
g(v) = 2i - 2 \quad \text{for} \quad 1 \leq i \leq \frac{n+1}{4}
\]

\[
g(v) = n(m + 1) + 1 - 2i \quad \text{for} \quad 1 \leq i \leq \frac{n+1}{4}
\]
Fig. 7.3: $C_7 \odot \overline{K}_8$ with directed edge - graceful labeling

Fig. 7.4: $C_9 \odot \overline{K}_6$ with directed edge - graceful labeling
Definition 7.4

The graph $C_m @ K_{1,n}$ is obtained by joining the vertex of a cycle C_m to the centre of a star $K_{1,n}$.

Theorem 7.5

The graph $C_{2m} @ K_{1,2n+1}$ ($m \geq 2, n \geq 1$) is directed edge - graceful for all m and n.

Proof

Let $V = \{v_1, v_2, \ldots, v_{2m}, u_1, u_2, \ldots, v_{2n+1}\}$ be the set of vertices. Now, we orient the edges of $C_{2m} @ K_{1,2n+1}$ such that the arc set A is given by
\[A = \{(v_{2i-1}, v_{2i}), \, 1 \leq i \leq m - 1\} \cup \{v_1, v_{2m}\} \cup \{(v_{2i-1}, v_{2i}), \, 1 \leq i \leq m\} \cup \{(v_1, u_j), \, 1 \leq j \leq 2n + 1\}. \]

The edges and their orientation of \(C_{2m} \@ K_{1,2n+1}\) are as in Fig. 7.6:

![Diagram](image)

Fig. 7.6: \(C_{2m} \@ K_{1,2n+1}\) with orientation

We now label the arcs of \(A\) as follows:

\[
\begin{align*}
 f((v_{2i+1}, v_{2i})) &= i & 1 \leq i \leq m - 1 \\
 f((v_1, v_{2m})) &= m \\
 f((v_{2i-1}, v_{2i})) &= m + 2n + 1 + i & 1 \leq i \leq m \\
 f((v_1, u_{2j-1})) &= m + j & 1 \leq j \leq n + 1 \\
 f((v_1, u_{2j})) &= m + 2n + 2 - j & 1 \leq j \leq n
\end{align*}
\]

The computed values of \(f^+(v_i), \, f^+(u_j)\) and \(f^-(v_i), \, f^-(u_j)\) are given below:

\[
\begin{align*}
 f^+(v_{2i}) &= m + 2n + 1 + 2i & 1 \leq i \leq m \\
 f^-(v_{2i}) &= 0 & 1 \leq i \leq m
\end{align*}
\]
\[f^+(v_{2i+1}) = 0 \quad 1 \leq i \leq m - 1 \]
\[f^-(v_{2i+1}) = -(m + 2n + 2 + 2i) \quad 1 \leq i \leq m - 1 \]
\[f^+(v_1) = 0 \]
\[f^-(v_1) = -(m + n + 1) [2(n + 1) + 1] \]
\[f^+(u_{2j-1}) = m + j \quad 1 \leq j \leq n + 1 \]
\[f^-(u_{2j-1}) = 0 \quad 1 \leq j \leq n + 1 \]
\[f^+(u_{2j}) = m + 2n + 2 - j \quad 1 \leq j \leq n \]
\[f^-(u_{2j}) = 0 \quad 1 \leq j \leq n \]

Then the induced vertex labels are:

Case (i) m is odd
\[g(u_{2j-1}) = m + j \quad 1 \leq j \leq n + 1 \]
\[g(u_{2j}) = m + 2n + 2 - j \quad 1 \leq j \leq n \]
\[g(v_{2i-1}) = m + 1 - 2i \quad 1 \leq i \leq \frac{m+1}{2} \]
\[g(v_{2i}) = m + 2n + 1 + 2i \quad 1 \leq i \leq \frac{m-1}{2} \]
\[g(v_{m+2i}) = 2i - 1 \quad 1 \leq i \leq \frac{m+1}{2} \]
\[g(v_{m+2i}) = 2m + 2n + 1 - 2i \quad 1 \leq i \leq \frac{m-1}{2} \]

Case (ii) m is even
\[g(u_{2j-1}) = m + j \quad 1 \leq j \leq n + 1 \]
\[g(u_{2j}) = m + 2n + 2 - j \quad 1 \leq j \leq n \]
\[g(v_{2i-1}) = m + 1 - 2i \quad 1 \leq i \leq \frac{m}{2} \]
\[g(v_{2i}) = m + 2n + 1 + 2i \quad 1 \leq i \leq \frac{m - 2}{2} \]
\[g(v_{m-2+2i}) = 2i - 2 \quad 1 \leq i \leq \frac{m+2}{2} \]
\[g(v_{m-1+2i}) = 2m + 2n + 2 - 2i \quad 1 \leq i \leq \frac{m}{2} \]

Clearly, it follows that all the vertex labels are distinct and ranges between 0 to \(p - 1 \). Thus, \(g \) is a bijection. Hence, the graph \(C_{2m} \oplus K_{1,2n+1} \) \((m \geq 2, n \geq 1)\) is directed edge-graceful for all \(m \) and \(n \). The directed edge-graceful labeling of \(C \oplus K_{10,13} \), \(C \oplus K_{12,9} \), \(C \oplus K_{14,7} \) and \(C \oplus K_{16,9} \) are given in Fig. 7.7, Fig. 7.8, Fig. 7.9 and Fig. 7.10 respectively.

Fig. 7.7: \(C_{10} \oplus K_{1,13} \) with directed edge-graceful labeling
Fig. 7.8: $C_{12} @ K_{1,9}$ with directed edge - graceful labeling

Fig. 7.9: $C_{14} @ K_{1,7}$ with directed edge - graceful labeling
Fig. 7.10: $C_{16} @ K_{1,9}$ with directed edge - graceful labeling

Theorem 7.6

The graph $C_{2m+1} @ K_{1,2n}$ ($m \geq 1, n \geq 1$) is directed edge - graceful for all m and n.

Proof

Let $V = \{v_1, v_2, ..., v_{2m+1}, u_1, u_2, ..., u_{2n}\}$ be the set of vertices. Now, we orient the edges of $C_{2m+1} @ K_{1,2n}$ such that the arc set A is given by

$$A = \{(v_{2i-1}, v_{2i}), 1 \leq i \leq m\} \cup \{(u_{2i+1}, v_{2i}), 1 \leq i \leq m\}$$

$$\cup \{(v_{2m+1}, v_1)\} \cup \{(v_{m+1}, u_j), 1 \leq j \leq 2n\}.$$
The edges and their orientation of $C_{2m+1} @ K_{1,2n}$ are as in Fig. 7.11:

![Diagram of $C_{2m+1} @ K_{1,2n}$]

Fig. 7.11: $C_{2m+1} @ K_{1,2n}$ with orientation

We now label the arcs of A as follows:

\[
\begin{align*}
 f((v_{2i-1}, v_{2i})) & = m + 2n + i & 1 \leq i \leq m \\
 f((v_{2i+1}, v_{2i})) & = i & 1 \leq i \leq m \\
 f((v_{m+1}, v_1)) & = 2m + 2n + 1 & f((v_{m+1}, u_1)) = m + 1 \\
 f((v_m, u_2j)) & = m + 1 + j & 1 \leq j \leq n \\
 f((v_m, u_2j+1)) & = m + 2n + 1 - j & 1 \leq j \leq n - 1
\end{align*}
\]

The computed values of $f^+(v_i)$, $f^+(u_j)$ and $f^-(v_i)$, $f^-(u_j)$ are given below:

\[
\begin{align*}
 f^+(v_1) & = 2m + 2n + 1 ; \\
 f^+(v_{2i}) & = m + 2n + 2i & 1 \leq i \leq \frac{m}{2} \\
 f^-(v_{2i}) & = 0 & 1 \leq i \leq \frac{m}{2} \\
 f^+(v_{2i}) & = m + 2n + 2i & 1 \leq i \leq \frac{m-1}{2} \\
\end{align*}
\]
\[f^-(v_{2i}) = 0 \quad 1 \leq i \leq \frac{m-1}{2} \text{ if } m \text{ is odd} \]

\[f^+(v_{m+1}) = 2m + 2n + 1 \quad \text{if } m \text{ is odd} \]

\[f^-(v_{m+1}) = -n - 1 \quad 2m + 2n + 2 + 2m + 1 + n \text{ if } m \text{ is odd} \]

\[f^+(v_{m+1}) = 0 \quad \text{if } m \text{ is even} \]

\[f^-(v_{m+1}) = -n (2m + 2n + 3) + 2m + 1 \quad \text{if } m \text{ is even} \]

\[f^+(v_{m+2i}) = 2m + 2n + 2i \quad 1 \leq i \leq \frac{m}{2} \text{ if } m \text{ is even} \]

\[f^-(v_{m+2i}) = 0 \quad 1 \leq i \leq \frac{m}{2} \text{ if } m \text{ is even} \]

\[f^+(v_{m+2i}) = 0 \quad 1 \leq i \leq \frac{m+1}{2} \text{ if } m \text{ is odd} \]

\[f^-(v_{m+2i}) = -(2m + 2n + 2i) \quad 1 \leq i \leq \frac{m+1}{2} \text{ if } m \text{ is odd} \]

\[f^+(v_{m+1+2i}) = 0 \quad 1 \leq i \leq \frac{m}{2} \text{ if } m \text{ is even} \]

\[f^-(v_{m+1+2i}) = -(2m + 2n + 1 + 2i) \quad 1 \leq i \leq \frac{m}{2} \text{ if } m \text{ is even} \]

\[f^+(v_{m+1+2i}) = 2m + 2n + 1 + 2i \quad 1 \leq i \leq \frac{m-1}{2} \text{ if } m \text{ is odd} \]

\[f^-(v_{m+1+2i}) = 0 \quad 1 \leq i \leq \frac{m-1}{2} \text{ if } m \text{ is odd} \]

\[f^+(u_1) = m + 1 \quad ; \quad f^-(u_1) = 0 \]

\[f^+(u_{2j}) = m + 1 + j \quad 1 \leq j \leq n \]

\[f^-(u_{2j}) = 0 \quad 1 \leq j \leq n \]
Then the induced vertex labels are:

Case (i) \(m \) is odd

\[
g(u_1) = m + 1
\]

\[
g(u_2) = m + 1 + j \quad 1 \leq j \leq n
\]

\[
g(u_{2j+1}) = m + 2n + 1 - j \quad 1 \leq j \leq n - 1
\]

\[
g(v_{2i-1}) = m + 2 - 2i \quad 1 \leq i \leq \frac{m+1}{2}
\]

\[
g(v_{2i}) = m + 2n + 2i \quad 1 \leq i \leq \frac{m-1}{2}
\]

\[
(v_{m+1}) = 0
\]

\[
(v_{m+2i}) = 2m + 2n + 2 - 2i \quad 1 \leq i \leq \frac{m+1}{2}
\]

\[
g(v_{m+1+2i}) = 2i \quad 1 \leq i \leq \frac{m-1}{2}
\]

Case (ii) \(m \) is even

\[
g(u_1) = m + 1
\]

\[
g(u_2) = m + 1 + j \quad 1 \leq j \leq n
\]

\[
g(u_{2j+1}) = m + 2n + 1 - j \quad 1 \leq j \leq n - 1
\]

\[
g(v_{2i-1}) = m + 2 - 2i \quad 1 \leq i \leq \frac{m}{2}
\]

\[
g(v_{2i}) = m + 2n + 2i \quad 1 \leq i \leq \frac{m}{2}
\]

\[
g(v_{m+1}) = 0
\]
\[g \left(v_{m+2i} \right) = 2i - 1 \quad 1 \leq i \leq \frac{m}{2} \]

\[g \left(v_{m+1+2i} \right) = 2m + 2n + 1 - 2i \quad 1 \leq i \leq \frac{m}{2} \]

Clearly, it follows that all the vertex labels are distinct and ranges between 0 to \(p - 1 \). Thus, \(g \) is a bijection. Hence, the graph \(C_{2m+1} \circ K_{1,2n} \) \((m \geq 1, n \geq 1)\) is directed edge - graceful for all \(m \) and \(n \). The directed edge - graceful labeling of \(C_9 \circ K_{1,10} \), \(C_{11} \circ K_{1,8} \), \(C_{13} \circ K_{1,8} \) and \(C_{15} \circ K_{1,12} \) are given in Fig. 7.12, Fig. 7.13, Fig. 7.14 and Fig. 7.15 respectively.

Fig. 7.12: \(C_9 \circ K_{1,10} \) with directed edge - graceful labeling

Fig. 7.13: \(C_{11} \circ K_{1,8} \) with directed edge - graceful labeling
Fig. 7.14: $C_{13} @ K_{1,8}$ with directed edge - graceful labeling

Fig. 7.15: $C_{15} @ K_{1,12}$ with directed edge – graceful labeling

Definition 7.7

The flag Fl_n is obtained by joining an edge to the vertex of a cycle C_n.

Theorem 7.8

The flag Fl_{2n} ($n \geq 2$) is directed edge - graceful for all n.

Proof

Let $V[Fl_{2n}] = \{v, v_1, v_2, ..., v_{2n}\}$ be the set of vertices. Now, we orient the edges of Fl_{2n} such that the arc set A is given by
\[A = \{(v_1, v)\} \cup (v_{2i-1}, v_{2i}), 1 \leq i \leq n \} \cup \{(v_{2i+1}, v_{2i}), 1 \leq i \leq n - 1 \} \cup \{(v_1, v_{2n})\}. \]

The edges and their orientation of \(F_{2n} \) are as in Fig. 7.16:

![Fig. 7.16: \(F_{2n} \) with orientation](image)

We now label the arcs of \(A \) as follows:

\[
\begin{align*}
 f((v_1, v)) &= 1 \\
 f((v_{2i-1}, v_{2i})) &= 2i & 1 \leq i \leq n \\
 f((v_{2i+1}, v_{2i})) &= 2i + 1 & 1 \leq i \leq n \\
 f((v_1, v_{2n})) &= 2n + 1
\end{align*}
\]

The computed values of \(f^+(v), f^+(v_i) \) and \(f^-(v), f^-(v_i) \) are given below:

\[
\begin{align*}
 f^+(v) &= 1 ; \quad f^-(v) = 0 \\
 f^+(v_1) &= 0 ; \quad f^-(v_1) = -(2n + 4) \\
 f^+(v_{2i}) &= 4i + 1 & 1 \leq i \leq n \\
 f^-(v_{2i}) &= 0 & 1 \leq i \leq n \\
 f^+(v_{2i+1}) &= -(4i + 3) & 1 \leq i \leq n - 1 \\
 f^-(v_{2i+1}) &= 0 & 1 \leq i \leq n - 1
\end{align*}
\]
Then the induced vertex labels are:

Case (i) : \(n \) even

\[
g(v) = 1 \quad ; \quad g(v_1) = 2(n-1)
\]

\[
g(v_{2n}) = 2n
\]

\[
g(v_{2i}) = 4i + 1 \quad 1 \leq i \leq \frac{n}{2} - 1
\]

\[
g(v_n) = 0
\]

\[
g(v_{2i+1}) = 2n - 4i - 2 \quad 1 \leq i \leq \frac{n}{2} - 1
\]

\[
\bar{g}(v_{n+2i+1}) = 2n + 3 - 4i \quad 1 \leq i \leq \frac{n}{2}
\]

\[
g(v_{n+2i}) = 4i \quad 1 \leq i \leq \frac{n}{2} - 1
\]

Case (ii) : \(n \) odd

\[
g(v) = 1 \quad ; \quad g(v_1) = 2(n-1)
\]

\[
g(v_{2n}) = 2n
\]

\[
g(v_{2i}) = 4i + 1 \quad 1 \leq i \leq \frac{n-1}{2}
\]

\[
g(v_n) = 0
\]

\[
g(v_{2i+1}) = 2n - 4i - 2 \quad 1 \leq i \leq \frac{n-3}{2}
\]

\[
\bar{g}(v_{n+2i+1}) = 4i - 2 \quad 1 \leq i \leq \frac{n-1}{2}
\]

\[
g(v_{n+2i}) = 2n + 1 - 4i \quad 1 \leq i \leq \frac{n-1}{2}
\]
Clearly, it follows that all the vertex labels are distinct and ranges between 0 to $p - 1$. Thus, g is a bijection. Hence, the flag Fl_{2n} ($n \geq 2$) is directed edge-graceful for all n. The directed edge-graceful labeling of Fl_{10}, Fl_{12}, Fl_{14} and Fl_{16} are given in Fig. 7.17, Fig. 7.18, Fig. 7.19 and Fig. 7.20 respectively.

Fig. 7.17: Fl_{10} with directed edge-graceful labeling

Fig. 7.18: Fl_{12} with directed edge-graceful labeling
Definition 7.9

A graph **dragon** is formed by joining the end point of the path $P_m (m \geq 2)$ to a cycle $C_n (n \geq 3)$. It is denoted by $D_{m,n}$.

Fig. 7.19: F_{14} with directed edge-graceful labeling

Fig. 7.20: F_{16} with directed edge-graceful labeling
Theorem 7.10

The graph $D_{m,n}$ ($m, n \geq 2$) is directed edge-graceful for all m and n even or m and n odd.

Proof

Let $V = \{u_i, 1 \leq i \leq m + n - 1\}$ be the set of vertices. Now, we orient the edges of $D_{m,n}$ such that the arc set A is given by

$$
A = \{ (u_{2i-1}, u_{2i}) \mid 1 \leq i \leq \frac{m + n - 2}{2} \} \cup \{ (u_{2i-1}, u_{2i+1}) \mid 1 \leq i \leq \frac{m + n - 2}{2} \} \cup \{ (u_{m+n-1}, u_1) \}
$$

The edges and their orientation of $D_{m,n}$ are as in Fig. 7.21:

![Fig. 7.21: $D_{m,n}$ with orientation](image)

We now label the arcs of A as follows:

For $1 \leq i \leq \frac{m + n - 2}{2}$

$$
f((u_{2i+1}, u_{2i})) = i
$$
For $1 \leq i \leq m + n - 2$

$$f\left((u_{2i-1}, u_{2i})\right) = \frac{m + n - 2 + i}{2}$$

$$f\left((u_{m+n-1}, u_m)\right) = m + n - 1$$

The computed values of $f^+\left(u_i\right)$ and $f^-\left(u_i\right)$ are given below:

Case (i): m and n are even

$$f^+\left(u_1\right) = 0$$

$$f^+\left(u_{2i}\right) = \frac{m + n - 2 + 2i}{2} \quad ; \quad 1 \leq i \leq \frac{m - 2}{2}$$

$$f^-\left(u_{2i}\right) = 0 \quad ; \quad 1 \leq i \leq \frac{m - 2}{2}$$

$$f^+\left(u_{2i+1}\right) = 0 \quad ; \quad 1 \leq i \leq \frac{m - 2}{2}$$

$$f^-\left(u_{2i+1}\right) = -\frac{m + n}{2} + 2i \quad ; \quad 1 \leq i \leq \frac{m - 2}{2}$$

$$f^+\left(u_m\right) = \frac{5m + 3n - 4}{2}$$

$$f^+\left(u_{m+2i}\right) = \frac{3m + n - 1 + 2i}{2} \quad ; \quad 1 \leq i \leq \frac{n - 1}{2}$$

$$f^-\left(u_{m+2i}\right) = 0 \quad ; \quad 1 \leq i \leq \frac{n - 1}{2}$$

$$f^+\left(u_{m+2i+1}\right) = 0 \quad ; \quad 1 \leq i \leq \frac{n - 1}{2}$$

$$f^-\left(u_{m+2i+1}\right) = \frac{3m + n - 4 + 2i}{2} \quad ; \quad 1 \leq i \leq \frac{n - 1}{2}$$
Case (ii): \(m \) and \(n \) are odd

\[
\begin{align*}
f^+(u_1) &= 0, \\
f^+(u_{2i}) &= \frac{m+n-2}{2} + 2i, \quad 1 \leq i \leq \frac{m-1}{2} \\
f^-(u_{2i}) &= 0, \quad 1 \leq i \leq \frac{m-1}{2} \\
f^+(u_{2i+1}) &= 0, \quad 1 \leq i \leq \frac{m-3}{2} \\
f^-(u_{2i+1}) &= -\frac{m+n}{2} + 2i, \quad 1 \leq i \leq \frac{m-3}{2} \\
f^+(u_m) &= m + n - 1, \quad f^-(u_m) = -\frac{3m+n-2}{2} \\
f^+(u_{m+2i}) &= 0, \quad 1 \leq i \leq \frac{n-1}{2} \\
f^-(u_{m+2i}) &= -\frac{3m+n-2}{2} + 2i, \quad 1 \leq i \leq \frac{n-1}{2} \\
f^+(u_{m+2i-1}) &= \frac{3m+n-4}{2} + 2i, \quad 1 \leq i \leq \frac{n-1}{2} \\
f^-(u_{m+2i-1}) &= 0, \quad 1 \leq i \leq \frac{n-1}{2}
\end{align*}
\]

Then the induced vertex labels are:

Case (i): \(\frac{m+n}{2} \) is even

\[
\begin{align*}
g(u_{2i-1}) &= \frac{m+n}{2} - 2i, \quad 1 \leq i \leq \frac{m+n}{4} \\
\end{align*}
\]
\[g(u_{2i}) = \frac{m+n-2}{2} + 2i \quad 1 \leq i \leq \frac{m+n}{4} - 1 \]
\[2i - \frac{m+n}{2} \leq i \leq \frac{m+n-2}{2} \]

Case (ii): \(\frac{m+n}{2} \) is odd

\[g(u_{2i-1}) = \frac{m+n+2}{4} - 2i \quad 1 \leq i \leq m+n + 2 \]
\[\frac{m+n}{2} \leq i \leq \frac{m+n+2}{2} \]

\[g(u_{2i}) = \frac{m+n-2}{2} + 2i \quad 1 \leq i \leq m+n-2 \]
\[2i - \frac{m+n}{2} \leq i \leq \frac{m+n-2}{2} + 1 \leq i \leq m+n \]

Clearly, if follows that all the vertex labels are distinct and ranges between 0 to \(p - 1 \). Thus, \(g \) is a bijection. Hence, the graph \(D_{m,n} \) (\(m, n \geq 2 \)) is directed edge - graceful for all \(m \) and \(n \) even or \(m \) and \(n \) odd. The directed edge - graceful labeling of \(D_{15,11}, D_{17,7}, D_{14,12} \) and \(D_{14,14} \) are given in Fig. 7.22, Fig. 7.23, Fig. 7.24 and Fig. 7.25 respectively.

Fig. 7.22: \(D_{15,11} \) with directed edge - graceful labeling
Fig. 7.23: $D_{17,7}$ with directed edge - graceful labeling

Fig. 7.24: $D_{14,12}$ with directed edge - graceful labeling

Fig. 7.25: $D_{14,14}$ with directed edge - graceful labeling

Definition 7.11

A tortoise $(To)_n$ is obtained from a path $v_1, v_2, ..., v_n$ by attaching an edge between v_i and v_{n-i+1} for $i = 1$ to $n - \frac{n}{2}$ and $n \geq 3$.
Theorem 7.12

The tortoise graph \((To)_{2n+1}\) \((n \geq 2)\) is directed edge-graceful for all \(n\).

Proof

Let \(V (To)_{2n+1} = \{v_1, v_2, ..., v_{2n+1}\}\) be the set of vertices. Now, we orient the edges of \((To)_{2n+1}\) such that the arc set \(A\) is given by

\[A = \{(v_i, v_{i+1}), 1 \leq i \leq n\} \cup \{(v_{i+1}, v_i), n + 1 \leq i \leq 2n\}
\]

\[\cup \{(v_i, v_{2n+2-i}), 1 \leq i \leq n\}.
\]

The edges and their orientation of \((To)_{2n+1}\) are as in Fig. 7.26:

![Graph](image)

Fig. 7.26: \((To)_{2n+1}\) with orientation

We now label the arcs of \(A\) as follows:

\[f((v_i, v_{i+1})) = i \quad 1 \leq i \leq 2n\]

\[f((v_{n+1-i}, v_{n+1+i})) = 2n + i \quad 1 \leq i \leq n\]

The computed values of \(f^+(v_i)\), \(f^+(v)\) and \(f^-(v_i)\), \(f^- (v)\) are given below:

\[f^+(v_i) = i - 1 \quad 1 \leq i \leq n\]
\[f^-(v_i) = -(3n + 1) \quad 1 \leq i \leq n \]
\[f^+(v_{n+1}) = 2n + 1 \quad ; \quad f^-(v_{n+1}) = 0 \]
\[f^+(v_{n+i}) = 3n + 1 + 2i \quad 1 \leq i \leq n - 1 \]
\[f^-(v_{n+i}) = -(n + i) \quad 1 \leq i \leq n - 1 \]
\[f^+(v_{2n+1}) = 3n \quad ; \quad f^-(v_{2n+1}) = -2n \]

Then the induced vertex labels are:
\[g(v_i) = n + i \quad 1 \leq i \leq n \]
\[g(v_{n+1}) = 0 \]
\[g(v_{n+i}) = i - 1 \quad 2 \leq i \leq n + 1 \]

Clearly, it follows that all the vertex labels are distinct and ranges between 0 to \(p - 1 \). Thus, \(g \) is a bijection. Hence, the tortoise graph \((To)_{2n+1} \ (n \geq 2) \) is directed edge - graceful for all \(n \). The directed edge - graceful labeling of \((To)_{11} \), \((To)_{13} \), \((To)_{15} \) and \((To)_{17} \) are given in Fig. 7.27, Fig. 7.28, Fig. 7.29 and Fig. 7.30 respectively.

Fig. 7.27: \((To)_{11}\) with directed edge - graceful labeling
Fig. 7.28: \((To)_{13}\) with directed edge - graceful labeling

Fig. 7.29: \((To)_{15}\) with directed edge - graceful labeling

Fig. 7.30: \((To)_{17}\) with directed edge - graceful labeling
Definition 7.13

The friendship graph $C_3^{(n)}$ is the one – point union of n copies of the cycle C_3

Theorem 7.14

The friendship graph $C_3^n (n \geq 3)$ is directed edge - graceful for all n.

Proof

Let $V\left(C_3^n\right) = \{v, v_1, v_2, \ldots, v_{2n}\}$ be the set vertices. Now, we orient the edges of C_3^n such that the arc set A is given by

Case (i): If n is odd

$$A = \left\{ (v, v_i), 1 \leq i \leq 2n \right\} \cup (v_{4i-3}, v_{4i-2}), 1 \leq i \leq \frac{n+1}{2} \cup (v_{4i}, v_{4i-1}), 1 \leq i \leq \frac{n-1}{2}. \right\}

Case (ii): If n is even

$$A = \left\{ (v, v_i), 1 \leq i \leq 2n \right\} \cup (v_{4i-3}, v_{4i-2}), 1 \leq i \leq \frac{n}{2} \cup (v_{4i}, v_{4i-1}), 1 \leq i \leq \frac{n-1}{2}. \right\}

The edges and their orientation of C_3^n are as in Fig. 7.31:

![Fig. 7.31: C_3^n with orientation](image_url)
We now label the arcs of A as follows:

Case (i): n odd

For $1 \leq i \leq 2n$

\[
\begin{align*}
 f((v, v_i)) &= \frac{i}{2} \quad \text{if } i = 1 \\
 2n - \frac{i - 1}{2} \quad &\text{if } i \equiv 1 \pmod{4} \\
 2n - \frac{i - 2}{2} \quad &\text{if } i \equiv 2 \pmod{4} \\
 f((v_{4i-3}, v_{4i-2})) &= 2n + 2i - 1 \quad 1 \leq i \leq \frac{n+1}{2} \\
 f((v_{4i}, v_{4i+1})) &= 2i + 2n \quad 1 \leq i \leq \frac{n-1}{2}
\end{align*}
\]

Case (ii): n even

For $1 \leq i \leq 2n$

\[
\begin{align*}
 f((v, v_i)) &= \frac{i}{2} \quad \text{if } i = 1 \\
 2n - \frac{i - 1}{2} \quad &\text{if } i \equiv 1 \pmod{4} \\
 2n - \frac{i - 2}{2} \quad &\text{if } i \equiv 2 \pmod{4}
\end{align*}
\]
\[f \left((v_{4i-3}, v_{4i-2}) \right) = 2n + 2i - 1 \quad 1 \leq i \leq \frac{n}{2} \]

\[f \left((v_{4i}, v_{4i-1}) \right) = 2i + 2n \quad 1 \leq i \leq \frac{n}{2} \]

The computed values of \(f^+ (v) \), \(f^+ (v_i) \) and \(f^- (v) \), \(f^- (v_i) \) are given below:

\[
\begin{align*}
f^+ (v_i) &= \begin{cases}
1 & i = 1 \\
4n + 1 & i = 2 \\
2n + 1 + i & i \equiv 3 \pmod{4} \\
5n & i \equiv 2 \pmod{4} \\
2n - \frac{i - 1}{2} & i \equiv 1 \pmod{4} \\
2n - \frac{i - 2}{2} & i \equiv 0 \pmod{4} \\
- \left(2n + 1\right) & i = 1 \\
0 & i = 2 \\
0 & i \equiv 3 \pmod{4} \\
0 & i \equiv 2 \pmod{4} \\
- 2n + \frac{i + 1}{2} & i \equiv 1 \pmod{4} \\
- 2n + \frac{i}{2} & i \equiv 0 \pmod{4}
\end{cases}
\]

\[
f^- (v_i) = \begin{cases}
0 & i = 1 \\
0 & i = 2 \\
0 & i \equiv 3 \pmod{4} \\
0 & i \equiv 2 \pmod{4} \\
- 2n + \frac{i + 1}{2} & i \equiv 1 \pmod{4} \\
- 2n + \frac{i}{2} & i \equiv 0 \pmod{4}
\end{cases}
\]

\[
f^+ (v) = 0
\]

\[
f^- (v) = - \left(n \left(2n + 1 \right) \right) \sum_{i=1}^{2n} f \left((v, v_i) \right)
\]
Then the induced vertex labels are:

For $1 \leq i \leq 2n$

$$g(v_i) = \begin{cases}
 i & i = 1 \\
 2n & i = 2 \\
 \frac{i}{i-1} & i \equiv 3 \pmod{4} \\
 \frac{2n+1-i}{2n} & i \equiv 2 \pmod{4} \\
 i & i \equiv 1 \pmod{4} \\
 i & i \equiv 0 \pmod{4}
\end{cases}$$

Clearly, it follows that all the vertex labels are distinct and ranges between 0 to $p - 1$. Thus, g is a bijection. Hence, the graph $C_3^n \ (n \geq 3)$ is directed edge - graceful for all n. The directed edge - graceful labeling of C_3^6, C_3^7, C_3^8 and C_3^9 are given in Fig. 7.32, Fig. 7.33, Fig. 7.34 and Fig. 7.35 respectively.

![Diagram](http://www.novapdf.com/)

Fig. 7.32: C_3^6 with directed edge - graceful labeling
Fig. 7.33: C_7^7 with directed edge - graceful labeling

Fig. 7.34: C_8^8 with directed edge - graceful labeling
Fig. 7.35: C^9_3 with directed edge - graceful labeling