ACKNOWLEDGEMENTS

First of all, I will thank almighty GOD to put up me to this level to pursue Ph.D. My heartfelt thanks to our Chancellor, Dr. G. Viswanathan, President and Chancellor, VIT University for impressing upon me the need for standards of excellence in education and research. I also express my gratitude to Mr. G. V. Selvam, Vice-presidents of VIT University for their strong moral support. I also thank Dr. Anand A. Samuel, Vice-Chancellor of VIT University for their excellent motivation. I am also very grateful to Dr. Elizabeth Rufus, Professor and Dean, SENSE, for her continuous support and encouragement during my research work.

I would like to express my sincere gratitude to my guide Dr. E. R. Rajkumar for his support and guidance for the completion of this work. I would like to extend my thanks to the committee members of this thesis Dr. Kumar Rajamani, Manager (Technical) at Robert Bosch Engineering and Business Solutions Ltd, Bangalore, Dr. N. Sivakumaran, Associate Professor, NIT Tiruchirappalli and internal DC Member Dr. Arulmozhivarman P., Professor and Dean, SELECT for their valuable suggestions and encouragement. A special thanks to Dr. Megha Singh for his guidance.

My heartfelt thanks to Dr. Thirumal Babu, HOD of Cardiology Government Medical College, Vellore / Heart Line Clinic, Thennamara Street, Vellore for teaching me the acquisition of echocardiography data interpretations and Dr. Olivier Bernard, Creatis Laboratory, University of Lyon, France for providing 3D Echocardiography data and their clinical information.

I thank all other faculties and staff of SENSE and SBST for their timely help during my research work. My gratitude also goes to all my colleagues for their support, friendship and useful discussions. Last but not the least, I thank my family members for their prayers and support.

Place : Vellore
Date : 06. 03. 2018

Rani Chacko
TABLE OF CONTENTS

ABSTRACT i
ACKNOWLEDGEMENTS iii
LIST OF FIGURES vi
LIST OF TABLES ix
LIST OF ABBREVIATIONS x
CHAPTER 1 INTRODUCTION 1
 1.1 Cardiology 1
 1.1.1 Anatomy of the Heart 2
 1.1.2 Region of Interest: Left Ventricle 3
 1.1.3 Measuring Cardiac Function 5
 1.1.4 Echocardiography: Principle, Acquisition and Display 6
 1.1.5 Ultrasound Interaction with Tissue 12
 1.1.6 Transthoracic Echocardiogram (TTE) 14
 1.2 Challenges 18
 1.3 Motivation and objectives 20
 1.4 Outline of the Thesis 21
CHAPTER 2 LITERATURE REVIEW 22
 2.1 Overview of Segmentation Approaches in 2DE 25
 2.1.1 Active Contour Segmentation Methods 25
 2.1.2. Active Shape and Active Appearance Models 26
 2.1.3. Level Set Segmentation Methods 27
 2.1.4. Deformable Templates 28
 2.1.5. Bottom-Up Segmentation 30
 2.1.6. Database Guided Segmentation 30
 2.1.7. Other Approaches 30
 2.2. Overview of Segmentation Approaches in 3DE 31
 2.2.1 Deformable Models 34
 2.2.2. Graph Cut Model 38
 2.2.3. Statistical Models 39
 2.2.4. Machine Learning from Large Databases 40
 2.2.5. Various other Segmentation Techniques 42
 2.3. Conclusion Drawn from Literature 47
CHAPTER 3 METHODOLOGY

3.1. Two Dimensional Echocardiography
 3.1.1. Flow Chart of the Proposed Semi-Automatic Method
 3.1.2. Steps Involved in the Method
 3.1.3. Calculation of Shape Descriptors
 3.1.4. Calculation of Clinical Indices

3.2. Three Dimensional Echocardiography
 3.2.1. Flowchart of the Automatic Method
 3.2.2. Steps Involved in the Procedure
 3.2.2.1. Histogram Equalization
 3.2.2.2. Adaptive Thresholding
 3.2.2.3. Voxel Connectivity Based Noise Filtering
 3.2.2.4. Segmentation of LV

CHAPTER 4 RESULTS AND DISCUSSION

4.1. Results of LV Segmentation in 2DE Data
 4.1.1. Summary

4.2. Results of Noise Filtering in 3DE Data
 4.2.1. Performance Analysis of Noise Filtering in 3DE Data
 4.2.1.1. Pratt’s Figure of Merit
 4.2.1.2. Contrast
 4.2.1.3. Summary

4.3. Results for Segmentation of LV in 3DE
 4.3.1. Validation Work
 4.3.2. Summary

CHAPTER 5 CONCLUSIONS AND FUTURE SCOPE

5.1. Conclusion

5.2. Future Scope

REFERENCES

LIST OF PUBLICATIONS
LIST OF FIGURES

1.1 Schematic diagram of the heart 2
1.2 The seven phases of a cardiac cycle 4
1.3 The echocardiographic instrument 7
1.4 a) Two-dimensional and b) Three-dimensional echocardiography probe 9
1.5 (a) Real time 3DE imaging. (b) Multibeat 3DE imaging. (c) Real time 3D zoom fashion imaging. 10
1.6 (a) Slice principle (b) Volume rendering principle (c) Surface rendering principle 11
1.7 a) Slice rendering of short axis view of LV b) Volume rendering of mitral valve c) Surface rendering of LV in apical four chamber view in 3D scene 12
1.8 Beam focusing by adding time delays across the array of piezoelectric elements 14
1.9 Apical Views in 2DE a) two chamber view b) three chamber view c) four chamber view 15
1.10 a) Multiple beat 3DE data acquisition from TEE apical window b) Real time 3DE single beat of whole heart c) Left ventricle from transthoracic window 16
1.11 Real time three dimensional dataset cropped into coronal, sagittal, transverse and full volume dataset 17
1.12 Echocardiographic imaging challenges (A) Strong speckle pattern with low contrast (B) drop out of the anterior wall due to long shadow and (C) similar intensity myocardial wall with trabeculation and yellow line is the ground truth segmentation. 20
2.1 LV extraction based on the phase level set method 28
2.2 LV surface detection LVQ in EchoPAC software 33
2.3 Initial surface for 3D image segmentation 35
2.4 Categorization of some common types of deformable models 36
2.5 Tracking of left ventricle in 3DE using trackers and the corresponding strain graph 41
3.1 Algorithm applied on to images for extraction of LV contour. 49
3.2 Schematic diagram of methodology 56
3.3 Von Neumann neighborhood in a) 2D and b) 3D 58
3.4 Ellipse Geometry 62
3.5 Slice by slice ellipse detection from edge pixels 64
3.6 The construction of face vertices mesh. 65
4.1 Input images in long axis four chamber view and the processed LV area of (a) normal subject, (b) abnormal subject1 and (c) abnormal subject2. 67
4.2 The area variation curve of LV cavity in one cardiac cycle. 68
4.3 The perimeter variation curve of LV cavity in one cardiac cycle. 69
4.4 The volume variation curve of LV cavity in one cardiac cycle 69
4.5 The shape index variation curve of LV cavity in one cardiac cycle 70
4.6 (a), (b) and (c) are the real input data sliced from image volume along different planes such as XY, XZ, YZ respectively. The output of the denoised filter for noise removal in (d), (e) and (f). The output of PMAD filter in (g), (h) and (i) and the output of SRAD filter in (j), (k) and (l). 73
4.7 Comparison of Pratt’s figure of merit for images taken from the dataset 75
4.8 Comparison of Contrast for images taken from the dataset 76
4.9 Different planar view of input 3D data in normal subject 77
4.10 Results of segmentation and combined axis in normal subject 77
4.11 Surface mesh generated in normal subject 78
4.12 Different planar view of input 3D data in abnormal subject 1. 78
4.13 Results of segmentation and combined axis in abnormal subject 1. 79
4.14 Surface mesh generated in abnormal subject 1 79
4.15 Different planar view of input 3D data in abnormal subject 2. 79
4.16 Results of segmentation and combined axis in abnormal subject 2. 80
4.17 Surface mesh generated in abnormal subject 2 80
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.18</td>
<td>Bland Altman plot for EDV, comparing the measured value against the reference values.</td>
<td>83</td>
</tr>
<tr>
<td>4.19</td>
<td>Bland Altman plot for ESV, comparing the measured value against the reference values.</td>
<td>83</td>
</tr>
<tr>
<td>4.20</td>
<td>Bland Altman plot for SV, comparing the measured value against the reference values.</td>
<td>84</td>
</tr>
<tr>
<td>4.21</td>
<td>Bland Altman plot for EF, comparing the measured value against the reference values</td>
<td>84</td>
</tr>
<tr>
<td>4.22</td>
<td>Linear Regression plot for EDV, comparing the measured value against the reference values.</td>
<td>85</td>
</tr>
<tr>
<td>4.23</td>
<td>Linear Regression plot for ESV, comparing the measured value against the reference values.</td>
<td>86</td>
</tr>
<tr>
<td>4.24</td>
<td>Linear Regression plot for SV, comparing the measured value against the reference values.</td>
<td>86</td>
</tr>
<tr>
<td>4.25</td>
<td>Linear Regression plot for EF, comparing the measured value against the reference values.</td>
<td>87</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 4.1: Comparison of cardiac parameters for normal and abnormal subjects 71
Table 4.2: Reference and estimated Clinical Indices values from the volume 81
Table 4.3: Performance of the proposed automatic segmentation algorithm for LV 87
Table 4.4: Comparison of segmentation accuracy 88
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD</td>
<td>Cardiovascular Disease</td>
</tr>
<tr>
<td>TTE</td>
<td>Transthoracic Echocardiogram</td>
</tr>
<tr>
<td>LV</td>
<td>Left Ventricle</td>
</tr>
<tr>
<td>ESV</td>
<td>End Systolic Volume</td>
</tr>
<tr>
<td>EDV</td>
<td>End Diastolic Volume</td>
</tr>
<tr>
<td>SV</td>
<td>Stroke Volume</td>
</tr>
<tr>
<td>EF</td>
<td>Ejection Fraction</td>
</tr>
<tr>
<td>2DE</td>
<td>Two Dimensional Echocardiography</td>
</tr>
<tr>
<td>3DE</td>
<td>Three Dimensional Echocardiography</td>
</tr>
<tr>
<td>GVF</td>
<td>Gradient Vector Flow</td>
</tr>
<tr>
<td>ASM</td>
<td>Active Shape Model</td>
</tr>
<tr>
<td>AAM</td>
<td>Active Appearance Model</td>
</tr>
<tr>
<td>PMAD</td>
<td>Perona Malik Anisotropic Diffusion</td>
</tr>
<tr>
<td>SRAD</td>
<td>Speckle Reduction Anisotropic Diffusion</td>
</tr>
</tbody>
</table>