CONTENTS

Acknowledgements
ABSTRACT
PREFACE
References

CHAPTER 1
Sequence-recombination through peptide backbone reversal: ‘Retro’ forms of beta sheet proteins

Introduction
Chirality transformations around alpha Carbons
Backbone reversal transformations around alpha Carbons
Mirroring of the Structure

Results
Solubility of the retro proteins inside the E.coli cell
Retro-HSP-12.6
Solubility of RETHSP-1 and RETHSP-2
Burial of aromatic residues
Quaternary structural status
Evidence of formation of a higher-order multimer upon concentration
Evidence of secondary structure formation
Heating causes structural consolidation rather than unfolding
Crystallization of RETHSP-1
Retro-GroES
Solubility of RETGRO-1 and RETGRO-2
Burial of aromatics
Quaternary structural status
Secondary structural content
Heating causes structural consolidation rather than unfolding
Crystallization of RETGRO
Retro-CspA
Solubility of RETCSPA-1 and RETCSPA-2
Burial of aromatics
Quaternary structural status
Secondary structural content
Thermal stability

Conclusions
CHAPTER 2
Sequence recombination through substructure shuffling:
Scrambling TIM barrels

Introduction

- Structure of the TIM barrel
- B/α barrel proteins – Single domains?
- Folding of the TIM barrels
- Previous protein engineering studies of TIM barrels
 - Circular permutations
 - De-novo design

Proposals concerning shuffled beta/alpha barrels

Results

- Preliminary characterization of scrambled TIMs
- Refolded forms of scrambled-TIMs vary in multimericity
- Scrambled TIMs of all sizes form β/α secondary structure
- Scrambled TIMs of all sizes form tertiary structure and bury aromatic residues
- The dimeric variant 2-4-6-8-1-3-5-7 shows significant stability to urea and thermal melting

Discussion and Conclusions

References

Chapter 3
Sequence recombination and aggregation:
Formation of amyloids through bleeding of conformational equilibria

Introduction

- Amyloids and amyloidoses
- Growth of fibrils
- Propensity of proteins to form amyloids
- Constitution of aggregates – Homomeric or heteromeric?

Questions and approaches

Results

Section A - Characteristics of aggregates
- Microscopic examination of RETCSPA-1 for congo red binding
- Electron microscopic examination of RETCSPA-1 and RETHSP-1 for the presence of amyloid fibers
- Microscopic examination of retro-CspA aggregates for exposed histidine tags

Section B - Characteristics of mixed aggregates:
- Evidence of Heteromeric aggregation
Chapter 4
Materials and Methods
Recombinant DNA methods
Amplification of retrogenes
Cloning in the yeast expression system
Triose phosphate isomerase-scrambling the order of β/α units
Making 1357
Making 2468
Making full barrels 24681357 and 13572468
Making the $1/4^{th}$ barrel 13
Primers used for reshuffling the yeast Triose phosphate isomerase
Cleanup of the PCR products
Digestion of the cleaned up PCR products
Cleanup of the samples after digestion
Phenol extraction and ethanol precipitation
Ligation
Transformation of the ligated product in E. coli competent cells
Making electrocompetent cells
Screening for positive transformants by alkaline lysis miniprep method
Sequencing of plasmids and checking for the presence of insert by PCR
Plasmid preparation
Removal of unincorporated dye terminators from the reaction
Cloning of the retro-proteins CspA and CilI in Pichia pastoris
Transformation of Pichia pastoris
Preparation of competent cells
Transformation
PCR analysis of Pichia integrants
Checking the expression of Pichia integrants
Expression and purification of proteins
 Purification of proteins from small expression cultures 106
 Culture growth for preparative purification 107
 Purification under native conditions 107
 Purification under denaturing conditions 108
Protein analysis and characterization 110
 Gel electrophoresis 110
 Fluorescence spectroscopy 110
 Fluorescence Quenching 110
 CD spectroscopy 111
 N-terminal sequencing 111
 Gelfiltration chromatography 111
 Electron microscopy 111
 Fluorescence microscopy 111
 Confocal microscopy 112
 Protein labeling for studying colocalization upon
 aggregation 112
 Determination of protein co-localization 114
References 114