Contents

1 Introduction
 1.1 Introduction
 1.2 Cryptography, Watermarking and Provable Security
 1.3 Previous Works
 1.4 Proposed Works
 1.4.1 1-bit-steganography in spatial domain (1bss)
 1.4.2 2-bit-steganography in spatial domain (2bss)
 1.4.3 3-bit-steganography in spatial domain (3bss)
 1.4.4 1-bit-steganography in frequency domain (2bss)
 1.4.5 2-bit-steganography in frequency domain (2bss)
 1.4.6 3-bit-steganography in frequency domain (2bss)
 1.5 Organization of the thesis

1-bit-steganography in spatial domain

2 Bit Level Image Authentication
 2.1 Problem Definition
 2.2 The Technique
 2.2.1 Algorithm for insertion
 2.2.2 Algorithm for extraction
 2.2.3 Example
 2.3 Discussion and Comparison between BLIA/SMTT and S-Tools algorithm
 2.4 Analysis on PSNR, IF and MSE
 2.5 Conclusions

3 Mask based 1-bit-colour image authentication
 3.1 Problem Definition
 3.2 The Technique
 3.2.1 Algorithm for insertion
 3.2.2 Algorithm for extraction
3.3 Results, Discussion and Comparison between MDHIAT and S-Tools algorithm

3.3.1 Histogram analysis
3.3.2 Noise analysis
3.3.3 Standard Deviation analysis

3.4 Analysis on PSNR, IF and MSE

3.5 Conclusions

2-bit-steganography in spatial domain

4 Image authentication and hiding large volume of data

4.1 Problem Definition
4.2 The Technique
4.2.1 Algorithm for insertion
4.2.2 Algorithm for extraction
4.2.3 Example

4.3 Results, Discussion and Comparison between AI/HLVD and S-Tools algorithm

4.3.1 Histogram analysis
4.3.2 Noise analysis
4.3.3 Standard Deviation analysis

4.4 Analysis on PSNR, IF and MSE

4.5 Conclusions

5 Mask based 2-bit-colour image authentication

5.1 Problem Definition
5.2 The Technique
5.2.1 Algorithm for insertion
5.2.2 Algorithm for extraction
5.2.3 Example

5.3 Results, Discussion and Comparison between AIHLVDSTM and S-Tools algorithm

5.3.1 Histogram analysis
5.3.2 Noise analysis
7.6 Conclusions
8. Image authentication in Frequency Domain
 8.1 Problem Definition
 8.2 Motivation and Formulation of DFT and IDFT in IAFDDFT technique
 8.3 The Technique
 8.3.1 The Insertion Technique
 8.3.2 The extraction Technique
 8.3.3 Example
 8.4 Results, Discussion and Comparison
 8.5 Analysis on PSNR, IF and MSE
 8.6 Conclusions
9. Legal Document authentication in Frequency Domain
 9.1 Problem Definition
 9.2 Motivation and Formulation of DFT and IDFT in IATFDDFT technique
 9.3 The Technique
 9.3.1 Algorithm for Insertion
 9.3.2 Algorithm for Extraction
 9.3.3 Example
 9.4 Results, Discussion and Comparison
 9.4.1 Analysis on Legal Document Authentication
 9.5 Analysis on PSNR, IF and MSE
 9.6 Conclusions
10. Colour image authentication in Frequency Domain
 10.1 Problem Definition
 10.2 Motivation and Formulation of DFT and IDFT in CDHTCIAFD technique
 10.3 The Technique
 10.3.1 Algorithm for Insertion
 10.3.2 Algorithm for Extraction
 10.4 Results, Discussion and Comparison
 10.5 Analysis on PSNR, IF and MSE
 10.6 Conclusions
2-bit-steganography in frequency domain
3-bit-steganography in frequency domain
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.3 Example</td>
<td>167</td>
</tr>
<tr>
<td>10.4 Results, Discussion and Comparison</td>
<td>168</td>
</tr>
<tr>
<td>10.4.1 Analysis on Legal Document Authentication</td>
<td>171</td>
</tr>
<tr>
<td>10.5 Analysis on PSNR, IF and MSE</td>
<td>172</td>
</tr>
<tr>
<td>10.6 Conclusions</td>
<td>173</td>
</tr>
<tr>
<td>1-bit-steganography in frequency domain</td>
<td>175</td>
</tr>
<tr>
<td>11. Multimedia colour image authentication in wireless communication</td>
<td>176</td>
</tr>
<tr>
<td>11.1 Problem Definition</td>
<td>177</td>
</tr>
<tr>
<td>11.2 Motivation and Formulation of DFT and IDFT in DFTMCIAWC technique</td>
<td>177</td>
</tr>
<tr>
<td>11.3 The Technique</td>
<td>178</td>
</tr>
<tr>
<td>11.3.1 Algorithm for Insertion</td>
<td>180</td>
</tr>
<tr>
<td>11.3.2 Algorithm for Extraction</td>
<td>181</td>
</tr>
<tr>
<td>11.3.3 Example</td>
<td>182</td>
</tr>
<tr>
<td>11.4 Results, Discussion and Comparison</td>
<td>183</td>
</tr>
<tr>
<td>11.4.1 Analysis on Legal Document Authentication</td>
<td>186</td>
</tr>
<tr>
<td>11.5 Analysis on PSNR, IF and MSE</td>
<td>187</td>
</tr>
<tr>
<td>11.6 Conclusions</td>
<td>189</td>
</tr>
<tr>
<td>12. Achievements and Models</td>
<td>190</td>
</tr>
<tr>
<td>12.1 Achievements</td>
<td>191</td>
</tr>
<tr>
<td>12.2 Graphical interpretation of proposed model in spatial domain</td>
<td>191</td>
</tr>
<tr>
<td>12.3 Graphical interpretation of proposed model in frequency domain</td>
<td>192</td>
</tr>
<tr>
<td>12.4 Proposed Model for authentication of Passport and Voter ID card</td>
<td>193</td>
</tr>
<tr>
<td>12.5 Authentication process of Passport and Voter ID card</td>
<td>194</td>
</tr>
<tr>
<td>12.6 Conclusions</td>
<td>196</td>
</tr>
<tr>
<td>13 References</td>
<td>197</td>
</tr>
</tbody>
</table>