TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>BONAFIDE CERTIFICATE</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xix</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xxii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Motivation and background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Aim</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives of the research</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>REVIEW OF LITERATURE</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Morphological identification of plants</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Significance of morphometric studies over phylogenetic analysis</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Role of plant derived natural products in drug discovery</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Medicinal plants as a source of traditional Medicine</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Bioactive principles in medicinal plants</td>
<td>18</td>
</tr>
</tbody>
</table>
2.4.1 Alkaloids

2.4.2 Terpenoids

2.4.3 Phenolic compounds

2.5 Identification of phytochemicals

2.5.1 High Performance Liquid Chromatography

2.6 An overview on medicinal plants in India

2.7 Mulberry

2.7.1 Taxonomic classification

2.7.2 Morphological description

2.7.3 Climatic condition and distribution

2.7.4 Species and varieties of mulberry

2.7.5 Mulberry cultivation

2.7.6 Uses of mulberry

2.7.7 Medicinal importance of mulberry

2.7.8 Antioxidant activity of mulberry leaves

2.7.9 Bioactive compounds isolated from leaves of *Morus*

2.7.10 Ethanopharmacological importance of mulberry leaves

2.8 Animal model studies for drug discovery

2.9 General overview of Diabetes

2.9.1 Experimental induction of diabetes in animal models

2.9.2 Currently available therapies

2.9.3 Importance of natural products for diabetes treatment

2.9.4 Mechanism of action of phyto-constituents against diabetes
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10</td>
<td>A brief outline about Obesity</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>2.10.1 Global scenario</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>2.10.2 Animal model for the study of obesity</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>2.10.3 High Fructose Corn Syrup</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>2.10.4 Fructose induced NAFLD and Dyslipidemia</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>2.10.5 Presently available therapies</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>2.10.6 Natural products as an excellent alternative to treat obesity</td>
<td>63</td>
</tr>
<tr>
<td>2.11</td>
<td>Computational methods for drug discovery from natural products</td>
<td>65</td>
</tr>
<tr>
<td>2.12</td>
<td>Conclusion</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>MORPHOLOGICAL CHARACTERIZATION AND DOCUMENTATION OF VARIOUS</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>MORUS SPECIES</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>3.2</td>
<td>Materials and Methods</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Collecting descriptors</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Environmental descriptors of collecting sites</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>3.2.3 Vegetative descriptors</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>3.2.4 Illustration</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>3.2.5 Data analysis</td>
<td>73</td>
</tr>
<tr>
<td>3.3</td>
<td>Results</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>3.3.1 Collection descriptors</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>3.3.2 Environmental descriptors</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>3.3.3 Vegetative descriptors</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>3.3.4 Illustrations</td>
<td>86</td>
</tr>
</tbody>
</table>
3.3.5 Relationship among the leaf morphometric characteristics of *Morus* species 90

3.3.6 Cluster analysis based on morphometric characteristics 91

3.3.7 Principal component analysis 93

3.4 Discussion 95

4 IDENTIFICATION OF BIOACTIVE MOLECULES FROM MULBERRY LEAVES AND THEIR ANTIOXIDANT PROPERTIES 101

4.1 Introduction 101

4.2 Materials and Methods 101

4.2.1 Plant material 101

4.2.2 Sampling time 102

4.2.3 Analytical experiments 102

4.2.4 Antioxidant properties 107

4.2.5 Characterization of polyphenolic compounds by HPLC 110

4.2.6 Data analysis 111

4.3 Results 112

4.3.1 Quantification of Carbohydrates 112

4.3.2 Quantification of Starch 113

4.3.3 Quantification of Reducing sugars 113

4.3.4 Quantification of Proteins 115

4.3.5 Determination of Amino acids 116

4.3.6 Quantification of Chlorophyll pigment: 117

4.3.7 Quantification of total Polyphenols 119

4.3.8 Quantification of total Flavonoids 119

4.3.9 Assay of total Antioxidant activity 121

4.3.10 DPPH scavenging activity 121
4.3.11 Assay of Catalase 123
4.3.12 Assay of Peroxidase 123
4.3.13 Assay of Ascorbate peroxidase 124
4.3.14 Characterization of polyphenolic compounds by HPLC 125
4.3.15 Relationship among the biochemical constituents, antioxidant activity and antioxidant enzymes 129
4.3.16 Cluster analysis 134
4.3.17 Principal component analysis 137
4.3.18 Grouping of mulberry species/varieties based on morphological and biochemical characteristics 140
4.4 Discussion 143

5 ANTIDIABETIC AND IN VIVO ANTIOXIDANT POTENTIAL OF M. LATIFOLIA LEAF EXTRACT IN STREPTOZOTOCIN INDUCED DIABETIC RATS 153
5.1 Introduction 153
5.2 Materials and methods 156
 5.2.1 Collection of plant material 156
 5.2.2 Preparation of polyphenols from mulberry leaf 156
 5.2.3 Animals 157
 5.2.4 Experimental design 157
 5.2.5 Experimental induction of diabetes 157
 5.2.6 Determination of blood glucose, lipid profile and liver marker enzymes 158
5.2.7 Determination of Glycosylated haemoglobin 158
5.2.8 Preparation of liver tissue homogenate 159
5.2.9 Estimation of liver Glycogen 159
5.2.10 Estimation of Superoxide dismutase 160
5.2.11 Estimation of Catalase 160
5.2.12 Estimation of Reduced glutathione 161
5.2.13 Lipid peroxidation 161
5.2.14 Histopathological studies 162
5.2.15 Data analysis 162

5.3 Results 163

5.3.1 Effect of *M. latifolia* leaf extract on fasting and post prandial blood glucose in STZ induced diabetic rats 163
5.3.2 Effect of *M. latifolia* leaf extract on body weight in STZ induced diabetic rats 164
5.3.3 Effect of *M. latifolia* leaf extract on glycosylated haemoglobin in STZ induced diabetic rats 165
5.3.4 Effect of *M. latifolia* leaf extract on glycogen in STZ induced diabetic rats 166
5.3.5 Effect of *M. latifolia* leaf extract on serum protein level in STZ induced diabetic rats 167
5.3.6 Effect of *M. latifolia* leaf extract on urea and creatinine levels in STZ induced diabetic rats 168
5.3.7 Effect of *M. latifolia* leaf extract on lipid profile in STZ induced diabetic rats

5.3.8 Effect of *M. latifolia* leaf extract on levels of ALT, AST and ALP in STZ induced diabetic rats

5.3.9 Effect of *M. latifolia* leaf extract on SOD and CAT

5.3.10 Effect of *M. latifolia* leaf extract on Reduced glutathione

5.3.11 Effect of *M. latifolia* extract on lipid peroxidation levels

5.3.12 Histopathological evaluation of pancreas treated with *M. latifolia* leaf extract

5.4 Discussion

6 EFFECT OF *M. LATIFOLIA* LEAF EXTRACT ON HIGH FRUCTOSE CORN SYRUP (HFCS) INDUCED OBESITY IN RAT MODELS

6.1 Introduction

6.2 Materials and methods

6.2.1 Collection of plant material

6.2.2 Preparation of polyphenols from mulberry leaf

6.2.3 Animals

6.2.4 Experimental design

6.2.5 Experimental induction of obesity

6.2.6 Body weight

6.2.7 Biochemical analysis

6.2.8 Histopathology of liver tissue
6.2.9 Data analysis 187
6.3 Results 188
6.3.1 Effect of *M. latifolia* leaf extract on serum glucose level in HFCS fed rats 188
6.3.2 Effect of *M. latifolia* leaf extract on body weight in HFCS fed rats 189
6.3.3 Effect of *M. latifolia* leaf extract on lipid profile in HFCS fed rats 190
6.3.4 Effect of *M. latifolia* leaf extract on levels of liver marker enzymes 192
6.3.5 Histopathological evaluation of liver treated with *M. latifolia* leaf extract 193
6.4 Discussion 194

7 MOLECULAR DOCKING OF POLYPHENOLIC CONSTITUENTS AGAINST GLUCOKINASE AND PANCREATIC LIPASE 198
7.1 Introduction 198
7.2 Materials and methods 201
7.2.1 Protein structure preparation 201
7.2.2 Ligand preparation 201
7.2.3 Molecular docking 203
7.3 Results 203
7.3.1 Molecular interaction of Glucokinase with bioactive compounds 203
7.3.2 Molecular interaction of Pancreatic lipase with bioactive compounds 208
7.4 Discussion 212

8 SUMMARY AND CONCLUSION 215
8.1 Summary 215
8.2 Conclusion 221
8.3 Outcome of the Study 221
8.4 Future Studies 222
REFERENCES 223
LIST OF PUBLICATIONS 266
CURRICULUM VITAE 268