Bibliography


Akbar N.S., Roza M. and Ellahi R., (2015), Influence of induced magnetic field and heat flux with the suspension of carbon nano tubes for the peristaltic flow in a permeable channel, Magnetism and Magnetic Materials., 381, 405-415.


Anjali Devi S.P. and Ganga B., (2009), Viscous dissipation effects on non-linear MHD


Chaturani P. and Palanisami V., (1990), Casson fluid model of Pulsatile flow of blood flow under periodic body acceleration, Biorheology., 27, 619-630.


Chaturani P. and Samy R.P., (1985), A study of non-Newtonian aspects of blood flow
through stenosed arteries and its applications in arterial diseases, Biorheology, 22, 521-531.


Hayat T. and Qasim M., (2010), Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet, Z. Naturforsch., 65(a), 231-239.


Korchevskii E.M. and Marochnik L.S., (1965), Magnetohydrodynamic version of movement of blood, Biophysics, 10, 411-413.


Mekheimer Kh.S., (2003), Nonlinear peristaltic transport through a porous medium in an inclined planar channel, J. Porous Media, 6, 189-201.


Nadeem S. and Noreen S.A., (2010b), Influence of magnetic field on peristaltic flow of a Williamson fluid in an inclined symmetric or asymmetric channel, Mathematical and Computer Modelling, 52, 107-119.


Poiseuille J.L.M., (1841), Experimental researches on the movement of liquids in tubes of very small diameters; II. Influence of diameter on the quantity of liquid which passes through the tubes of very small diameters. C.R. Acad. Sci. 12, 112-115.


Sobh A.M., (2004), Peristaltic transport of a magneto Newtonian fluid through a porous medium, Turkish J. of Islamia University of Gaza, 12, 37-49.


Tripathi D., (2013), Study of transient peristaltic heat flow through a finite porous channel, Mathematical and Computer modeling, 57, 1270-1283.


Valencia A. and Villanueva M., (2006), Unsteady flow and mass transfer in models


William Harvey, (1628), On the motion of the heart and blood in animals. London, 1628.

