CHAPTER I

Some Set-theoretic Properties Of Linear Operators

1. Introduction

During the last two decades much investigations have been made for the existence of fixed point of operators T which map a Banach space E (or a metric space) into itself satisfying the condition

\[||Tx-Ty|| \leq a_1 ||x-y|| + a_2 ||x-Tx|| + a_3 ||y-Ty|| + a_4 ||x-Ty|| + a_5 ||y-Ty|| \]

... (1)

where $a_1 \notin 0$ and $\sum_{i=1}^{5} a_i < 1$, for all $x, y \notin E$.

The existence of fixed point of operators those satisfy the condition (1) has been investigated by many authors including that in \sum_{22}, where some further references may be found.
The condition (1) coincides with Banach's condition if \(a_2 = a_3 = a_4 = a_5 = 0 \), with Kannan's condition if \(a_1 = a_4 = a_5 = 0, a_2 = a_3 < \frac{1}{2} \); with Reich's condition if \(a_2 = a_3 = 0 \).

The operators with condition (1) have played a dominant role in many investigations but it appears that so far no investigation has been made to find out the set-theoretic position of these operators in the space \(L \) of all continuous linear operators mapping \(E \) into itself. The main purpose of this chapter is in this direction.

2. Definitions and Examples

It is well-known that \(L \) is a Banach space with norm
\[
||T|| = \sup_{||x|| \leq 1} ||Tx||.
\]

Definition 1.1. Let \(X \) be a bounded closed subset of \(E \) and \(S \) denote the set of all continuous linear operators \(T \in L \) mapping \(X \) into itself and satisfying the condition (1) with \(a_1 \gamma, 0, \sum_{i=1}^{5} a_i \leq 1, a_i > 0 \), for all \(x, y \in X \).
We present below two examples showing the existence of continuous linear operators those satisfy the condition (1) as well as those do not satisfy the condition (1).

Example 1.1. Let $E = \mathbb{R}$, the set of real numbers with usual norm. Let T be such that $T x = \frac{1}{2^6} x$. Then T is a continuous linear operator and $T \in S$ where $X = \bigcup_{0,1}$

and $a_1 = \frac{1}{2^9}$, $a_2 = \frac{1}{2^5}$, $a_3 = \frac{1}{2^4}$, $a_4 = \frac{1}{2^2}$, $a_5 = \frac{1}{2^3}$.

Example 1.2. Let $E = \mathbb{R}$ with its usual norm. Let T be such that $T x = x/2$. Let $X = \bigcup_{0,1}$ and a_i's be the same as in Ex. 1.1. Then, by taking the pair of points $x = 0$, $y = 1$ it may be verified that $T \in L$ but $T \notin S$.

Definition 1.2. Let $L_1 \subset L$ and $T \in L$. Then T is said to be a limit element of L_1 if for arbitrary $\varepsilon > 0$ there exists $T_1 \in L_1$ different from T such that $||T - T_1|| < \varepsilon$.

If all the limit elements of L_1 are members of L_1 then L_1 is said to be closed in L.

Definition 1.3. A non-empty set $L_1 \subset L$ is said to be dense-in-itself if every element of L_1 is a limit element of L_1.

Definition 1.4. A non-empty set $L \subset L$ is said to be perfect if L is closed and dense-in-itself.

Definition 1.5. Let $a_1 > 0$, $a_1 > 0$ be such that $\sum_{i=1}^{5} a_i \leq 1$. For $\varepsilon > 0$, S_ε denotes the set of all continuous linear operators $T \in L$ mapping X into itself such that

$$||Tx-Ty|| \leq a_1 ||x-y|| + a_2 ||x-Tx|| + a_3 ||y-Ty|| + a_4 ||x-Ty|| + a_5 ||y-Tx|| + \varepsilon$$

for all $x, y \in X$.

The operator T of Example 1.2, although it does not belong to S, but belongs to S_1.

3. Theorems and Corollary

Theorem 1.1. The set S is closed in L.

Proof. Since X is bounded, there exists $M > 0$ such that

$$||x|| \leq M \text{ for all } x \in X.$$

Let $T \in L$ be a limit element of S and let $T' \in S$. We show
that $T \in S$. There exists a sequence $\{T_n\}$, $T_n \in S$ such that $\|T_n - T\| \rightarrow 0$ as $n \rightarrow \infty$. So, for any $x \in X$,

$$T_n = \lim_{n \rightarrow \infty} T_n x$$

where $T_n x \in X$ for all n.

Since X is closed and $T_n x \in X$ for all n, $T_n x \in X$, i.e., T maps X into itself.

Now for $x, y \in X$,

$$\|T_n x - T_n y\| \leq \|T_n x - T'_n x\| + \|T'_n x - T'_n y\| + \|T'_n y - T_n y\|$$

$$\leq \{ \|x\| + \|y\| \} \|T - T'_n\| + a_1 \|x - y\| + a_2 \|x - T'_n x\|$$

$$+ a_3 \|y - T'_n y\| + a_4 \|x - T'_n y\| + a_5 \|y - T'_n x\|$$

$$\leq 2M \|T - T'\| + a_1 \|x - y\| + a_2 \|x - T x\|$$

$$+ a_3 \|y - T y\| + a_4 \|x - T y\| + a_5 \|y - T x\|$$

$$+ \{ a_2 \|T x - T'_n x\| + a_3 \|T y - T'_n y\| + a_4 \|T y - T'_n y\| +$$

$$+ a_5 \|T x - T'_n x\| \}^2$$

i.e.,

$$\|T x - T y\| \leq 2M \|T - T'\| + a_1 \|x - y\| + a_2 \|x - T x\|$$

$$+ a_3 \|y - T y\| + a_4 \|x - T y\| + a_5 \|y - T x\|$$

$$+ \{ (a_2 + a_3^2) \|x\| + (a_3 + a_4) \|y\| \} \|T - T'\|$$
\[\xi \leq 2M \|T - T'\| + a_1 \|x - y\| + a_2 \|x - Tx\| \\
+ a_3 \|y - Ty\| + a_4 \|x - Ty\| + a_5 \|y - Tx\| \\
+ (a_2 + a_3 + a_4 + a_5) M \|T - T'\|, \]

i.e., \[\|T_x - Ty\| \leq (2 + \sum_{i=2}^{5} a_i) M \|T - T'\| + a_1 \|x - y\| + a_2 \|x - Tx\| \\
+ a_3 \|y - Ty\| + a_4 \|x - Ty\| + a_5 \|y - Tx\|. \]

Corresponding to the arbitrary \(\xi > 0 \), \(T' \) can be so selected that

\[\|T - T'\| < \frac{\xi}{(2 + \sum_{i=2}^{5} a_i) M} \]

\[\|T_x - Ty\| \leq \xi, \quad a_1 \|x - y\| + a_2 \|x - Tx\| + a_3 \|y - Ty\| \\
+ a_4 \|x - Ty\| + a_5 \|y - Tx\|. \]

Since \(\xi > 0 \) is arbitrary, it follows that \(T \in S \) and the theorem is proved.

Corollary 1.1. The set \(S_\xi \) is closed in \(L \).
From this stage onwards we assume that X is a bounded closed convex subset of E that contains the null element.

Theorem 1.2. The set S_ξ, $\xi \in M(\sum a_i)$, if it is not void, is dense-in-itself.

Proof. Let $T \in S_\xi$ and let T_1 be an operator defined on E by

$$T_1x = T(x - \xi x) \text{ where } 0 \leq \xi \leq 1.$$

Since X is convex containing the null element, T_1 is a continuous linear operator mapping X into itself. Also for $x, y \in X$,

$$||T_1x - T_1y|| = ||T(x - \xi x) - T(y - \xi y)||$$

$$= ||Tx - Ty - \xi(Tx - Ty)||$$

$$= (1 - \xi) ||Tx - Ty||$$

$$\leq (1 - \xi) \left(a_1 ||x - y|| + a_2 ||x - Tx|| + a_3 ||y - Ty|| + a_4 ||x - Ty|| + a_5 ||y - Tx|| + \xi \right)$$

$$\leq (1 - \xi) \left(a_1 ||x - y|| + a_2 ||x - T_1x|| + a_3 ||y - T_1y|| + a_4 ||x - T_1y|| + a_5 ||y - T_1x|| + \xi \right)$$
\[\xi (1 - \xi) \sum_{i=1}^{\xi} a_i \|x - y\| + a_2 \|x - T_1x\| + a_3 \|y - T_1y\| + a_4 \|x - T_1y\| + a_5 \|y - T_1x\| \]

\[+ (1 - \xi) \left(\sum_{i=\xi}^{\xi} a_i \right) M \xi + (1 - \xi) \varepsilon. \]

Since \(\xi > M \sum_{i=1}^{\xi} a_i \), we have
\[(\sum_{i=1}^{\xi} a_i) M \xi (1 - \xi) + (1 - \xi) \varepsilon < \varepsilon. \]

\[\|T_1x - T_1y\| \leq \sum_{i=1}^{\xi} a_i \|x - y\| + a_2 \|x - T_1x\| + a_3 \|y - T_1y\| + a_4 \|x - T_1y\| + a_5 \|y - T_1x\| + \varepsilon. \]

So, \(T_1 \in S_\varepsilon \). Also,
\[\|T - T_1\| = \sup_{\|x\| \leq 1} \|Tx - T_1x\| = \sup_{\|x\| \leq 1} \|T_\xi x\| \]
\[= \xi \|T\|. \]

Let \(\xi > 0 \) be arbitrary. Then \(0 < \varepsilon < 1 \) can always be selected such that \(T_1 \in S_\varepsilon \) and \(\|T - T_1\| < \xi \). This, however, shows that \(T \) is a limit element of \(S_\varepsilon \), and therefore \(S_\varepsilon \) is dense-in-itself. The proof of the theorem is, therefore, complete.

Combining Theorem 1.2 with the corollary, we have the following theorem:
Theorem 1.2. The set S_{ξ}, $\xi > M\left(\sum_{i=1}^{\infty} a_i\right)$, $a_i > 0$ and

$$\sum_{i=1}^{\infty} a_i \leq 1$$

is perfect, if it is not void.

In Theorem 1.2 we see that if $\xi > M\left(\sum_{i=1}^{\infty} a_i\right)$ then S_{ξ} is dense-in-itself and clearly $S \subset S_{\xi}$. This ensures that $S \subset S'_{\xi}$ provided $\xi > M\left(\sum_{i=1}^{\infty} a_i\right)$ where S'_{ξ} is the derived set of S_{ξ}. In the following theorem we prove this result without the stated restriction on ξ.

Theorem 1.4. $S \subset S'_{\xi}$ where S'_{ξ} is the set of all limit elements of S_{ξ}.

Proof. For $T \in S$ we define an operator T_1 on E by $T_1x = (1 - \xi)Tx + \xi x$ where $0 < \xi < 1$. Since X is convex containing the null-element, T_1 is a continuous linear operator mapping X into itself. Also,

$$||T-T_1|| = \sup ||Tx-(1-\xi)Tx-\xi x||$$

$$||x|| \leq 1$$

$$= \sup \xi ||Tx-x||$$

$$||x|| \leq 1$$

$$\leq \xi \left(||T||+1\right)$$

$$= B\xi$$, say

... (2)
where $B = ||T|| + 1$.

For $x, y \in X$,

$$||T_1 (x - T_1 y)|| = ||(1 - \xi)Tx + \xi x - (1 - \xi)Ty - \xi y||$$

$$\leq (1 - \xi) \|a_1 \|x - y\| + a_2 \|x - Tx\| + a_3 \|y - Ty\|$$

$$+ a_4 \|x - Ty\| + a_5 \|y - Tx\| \xi$$

$$+ 2 \xi M$$

$$\leq a_1 \|x - y\| + a_2 \|x - T_1 x\| + a_3 \|y - T_1 y\|$$

$$+ a_4 \|x - T_1 y\| + a_5 \|y - T_1 x\|$$

$$+ a_6 \|Ty - y\| + a_7 \|Tx - x\| \xi$$

$$+ 2 \xi M,$$

i.e., $||T_1 (x - T_1 y)|| \leq a_1 \|x - y\| + a_2 \|x - T_1 x\| + a_3 \|y - T_1 y\|$

$$+ a_4 \|x - T_1 y\| + a_5 \|y - T_1 x\| + 2M \xi (\sum_{i=2}^{7} a_i)$$

$$+ 2 \xi M.$$.
\begin{align*}
&= a_1 ||x-y|| + a_2 ||x-T_1 x|| + a_3 ||y-T_1 y|| \\
&\quad + a_4 ||x-T_1 y|| + a_5 ||y-T_1 x|| + 2M \xi \left(1 + \sum_{i=2}^{5} a_i \right).
\end{align*}

\begin{equation}
\text{(3)}
\end{equation}

If $\xi < \frac{\varepsilon}{2M(1 + \sum_{i=2}^{5} a_i)}$, then from (3), it follows that $T_1 \in \mathcal{S}_{\varepsilon}$. Let $\varepsilon' (> 0)$ be arbitrary. Then if

\begin{equation}
0 < \xi < \min \left[\frac{\varepsilon}{2M(1 + \sum_{i=2}^{5} a_i)}, 1, \frac{\varepsilon'}{B} \right],
\end{equation}

it follows from (2) that $||T-T_1|| < \varepsilon'$. This proves the theorem.

\textbf{Theorem 1.5.} Let $T_n \in L, n = 1, 2, 3, \ldots$ and T_n converges to $T \in L$ in norm. If x_0 be a fixed point of T_n for $n = 1, 2, 3, \ldots$ then x_0 is a fixed point of T. Conversely, if x_0 is a fixed point of T then $T_n x_0 \to x_0$ as $n \to \infty$.

\textbf{Proof.} We have

\begin{equation}
||x_0 - Tx_0|| = ||x_0 - T_n x_0|| + ||T_n x_0 - Tx_0||
\quad = ||T_n x_0 - Tx_0|| \leq ||T_n - T|| ||x_0||
\quad \to 0 \text{ as } n \to \infty.
\end{equation}

So, $Tx_0 = x_0$.
Conversely, we have

\[||x_0 - T_n x_0|| \leq ||T - T_n|| \cdot ||x_0|| \]
\[\rightarrow 0 \text{ as } n \rightarrow \infty. \]

This proves the theorem.

Theorem 4.6. Let \(T_n \in L \) map \(X \) into itself and suppose that \(x_n \) is a fixed point of \(T_n \). Also let \(||T_n - T|| \rightarrow 0 \) as \(n \rightarrow \infty \), \(T \in L \). Then the sequence \(\{ x_n \} \) is convergent and converges to a fixed point of \(T \) provided that \(X \) is compact and there exists \(\alpha \) such that \(||T_n|| \leq \alpha < 1 \) for each \(n \).

Proof. Since \(X \) is compact, \(\{ x_n \} \supseteq \{ x_{n_i} \} \rightarrow x_0 \in X \), say as \(i \rightarrow \infty \).

Now, \[||x_0 - T_n x_0|| = ||x_0 - T_n x_{n_i} + T_n x_{n_i} - T_n x_0|| \]
\[= ||x_0 - x_{n_i} + T_n(x_{n_i} - x_0)|| \]
\[\leq ||x_{n_i} - x_0|| + ||T_n|| ||x_{n_i} - x_0|| \]
\[\rightarrow 0 \text{ as } i \rightarrow \infty. \]

Also, \[||x_0 - T x_0|| = ||x_0 - T_n x_0 + T_n x_0 - T x_0|| \]
\[\leq ||x_0 - T_n x_0|| + ||T_n - T|| ||x_0|| \]
\[\rightarrow 0 \text{ as } i \rightarrow \infty. \]
So, \(T x_0 = x_0 \) i.e., \(x_0 \) is a fixed point of \(T \).

We now show that \(\{ x_n \} \) is a cauchy sequence.

We have, \(\| x_n - x_m \| = \| T_n x_n - T_m x_m \| \)

\[
\leq \| T_n \| \| x_n - x_m \| + \| T_n T_m \| \| x_m \|
\]

i.e., \(\| x_n - x_m \| \leq \frac{\| T_n T_m \|}{1 - \| T_n \|} \| x_m \| \rightarrow 0 \), as \(n, m \rightarrow \infty \).

This shows that \(\{ x_n \} \) is a cauchy sequence and the proof is complete.