List of Figures

2.1 Bragg Curve Spectroscopy (BCS) detector .. 27
2.2 Electronics set-up for the BCS detector .. 28
2.3 Energy spectrum of the 241Am α-source .. 29
2.4 Two dimensional spectrum showing energy vs Bragg peak for the BCS detector at 45° (lab.) ... 30
2.5 Electronics set-up .. 35
2.6 Electronics set-up for kinematic coincidence ... 37
2.7 Energy spectrum of particles from the elastic and inelastic scattering of 28Si on 28Si (a) at $E_{lab} = 69$ MeV and $\theta_{lab} = 45^\circ$. (b) The observed coincidence spectrum at 72 MeV. .. 38
2.8 Energy spectrum of particles from the elastic and inelastic scattering of 16O on 142Nd at $E_{lab} = 70$ MeV and $\theta_{lab} = 93^\circ$ (top) and scattering of 16O on 144Nd at $E_{lab} = 74$ MeV and $\theta_{lab} = 68^\circ$ (bottom). .. 41
2.9 Energy spectrum of particles from the elastic and inelastic scattering of 16O on 146Nd at $E_{lab} = 70$ MeV and $\theta_{lab} = 66^\circ$ (top). The annular detector spectrum at an extreme backward angle (bottom). 42
2.10 Two dimensional spectrum of E vs ΔE for a telescope detector at 82° and energy 82 MeV in the 16O + 144Nd system. 43

4.1 Elastic and inelastic (2^+, 1.778 MeV) angular distributions for 28Si + 28Si. (a) Solid curves result from the coupled channels calculations with potential CCI (Table 4.1), including target and projectile excitations of first 2^+ state and quadrupole reorientation coupling (Table 4.2). Dotted line is without reorientation. The elastic curves for these cases are indistinguishable. (b) With the potential set CCII and the deformation parameter set II (see text). 81

4.2 (a) Real folded potential for 28Si on 28Si system at $E_{lab.} = 72$ MeV, calculated with energy and density dependent M3Y interaction (DDM3Y). Exchange part (dash-dot curve) was calculated by taking DDM3Y interaction with zero range pseudopotential. Solid curve in the figure is the result of the contributions of direct (dotted curve) and exchange parts (top). The comparison between phenomenological and folded potentials are shown in Fig. (b) at the bottom. Where curves A and B are phenomenological potential from Table 4.1, set CCI and CCII respectively. The Curve C is the double folded potential. 84

4.3 Solid curve (curve A) represents the transition potential for 28Si on 28Si system at $E_{lab.} = 45°$ from folding model calculation using shell model transition density (with normalisation factor $\frac{\pi^{-\frac{1}{2}}}{2}$). Dotted line (curve B) is from the deformed optical model potential ($= \frac{\pi^{-\frac{1}{2}}}{2} \delta_l \frac{\alpha l}{\alpha r}$). Logarithmic plot of the potential in the surface region to which the scattering is sensitive is shown in the inset. 86
4.4 Imaginary potentials of 28Si + 28Si at $E_{\text{lab.}} = 72$ MeV. Solid curve (curve C) in the figure is the total imaginary potential (see text) including the contribution of 2^+ state of target and projectile (dash-dot curve, A) and their mutual contribution (dotted curve, B). . . 88

4.5 Elastic angular distribution for 28Si + 28Si system. Solid curve shows the theoretical predictions with microscopically calculated potential (see text). ... 90

4.6 Solid curve represents the coupled channels calculation with microscopically derived potential (see text) including $0^+ - 2^+$ coupling of target and projectile excitations and quadrupole reorientation coupling (oblate shape). Dotted line with prolate shape. 91

4.7 Excitation function for elastic and inelastic (2^+) scattering of 28Si on 28Si system at $\theta_{\text{lab.}} = 45^\circ$. Continuous curves are the results of coupled channels calculation including $0^+ - 2^+$ coupling of both target and projectile excitation and quadrupole reorientation. Solid curve represents the microscopic calculation and dotted curve represents the phenomenological (see text). ... 95

4.8 Calculations with prolate and oblate shapes are shown in Fig. (a). The contribution of the Coulomb excitation and the nuclear coupling are shown in Fig. (b). ... 96

4.9 Excitation function fit with an energy dependent reorientation coupling (see text). ... 97

5.1 Optical model fit for the elastic scattering of 16O +142Nd system. . 106

5.2 Optical model fit for the elastic scattering of 16O +144Nd system. . 107
5.3 Optical model fit for the elastic scattering of $^{16}\text{O} + ^{146}\text{Nd}$ system. 108

5.4 Elastic angular distribution of $^{16}\text{O} + ^{142,144,146}\text{Nd}$ system at 74 MeV incident energy. The oscillation near the Coulomb rainbow angle dampens with increasing mass number. 109

5.5 (a) Radial distribution of the absorption of $^{16}\text{O} + ^{142}\text{Nd}$ system (top) at 60.1, 65.1, 70.1, 74.1 MeV incident energies. As expected, the absorption at 60.1 MeV incident energy lies on the r axis. (b) The difference of distribution for $^{16}\text{O} + ^{142,144,146}\text{Nd}$ systems at 74 MeV. 112

5.6 Elastic and inelastic ($2^+, 1.576$ MeV) angular distributions for $^{16}\text{O} + ^{142}\text{Nd}$. Solid curves result from the coupled channels calculations with potential CC (Table 5.3), including target and projectile excitations of first 2^+ state and quadrupole reorientation coupling (Table 5.2). Dotted curve shows the theoretical predictions with microscopically calculated potential (see text). 116

5.7 Elastic and inelastic ($2^+, 0.696$ MeV) angular distributions for $^{16}\text{O} + ^{144}\text{Nd}$. Solid curves result from the coupled channels calculations with potential CC (Table 5.3), including target and projectile excitations of first 2^+ state and quadrupole reorientation coupling (Table 5.2). Dotted curve shows the theoretical predictions with microscopically calculated potential (see text). 117
5.8 Elastic and inelastic (2+, 0.454 MeV) angular distributions for $^{16}\text{O} + ^{146}\text{Nd}$. Solid curves result from the coupled channels calculations with potential CC (Table 5.3), including target and projectile excitations of first 2$^+$ state and quadrupole reorientation coupling (Table 5.2). Dotted curve shows the theoretical predictions with microscopically calculated potential (see text).

5.9 The experimental and theoretically calculated (Shell model) energy level diagram for $^{142,144,146}\text{Nd}$.

5.10 The ground state density distributions of ^{16}O and $^{142,144,146}\text{Nd}$ using shell model wave function. Here p and n represent the proton and neutron distributions respectively.

5.11 The transition density distributions of $^{142,144,146}\text{Nd}$ using shell model wave function along with the electron scattering data taken from ref. [8-10]. Here dotted and dash-dot lines represent the proton and neutron distributions respectively.
5.12 (a) Real folded potential for ^{16}O on ^{142}Nd system at $E_{\text{lab.}} = 74.1$ MeV, calculated with energy and density dependent M3Y interaction (DDM3Y). Exchange part (dash-dot curve) was calculated by taking DDM3Y interaction with finite range exchange potential (top). Solid curve in the figure is the result of the contributions of direct (dotted curve) and exchange parts. (b) The calculation with zero range pseudopotential is shown by dotted line, the finite range exchange by solid curve and the phenomenological potential by dash-dot curve. Logarithmic plot of the potential in the surface region is shown in the inset.

5.13 (a) Solid curve represents the transition potential for ^{16}O on ^{142}Nd system at $E_{\text{lab.}} = 74$ MeV from folding model calculations using shell model transition density. Dotted line is from the deformed optical model potential (top). Logarithmic plot of the potential in the surface region to which the scattering is sensitive is shown in the inset. (b) The transition density for other Nd isotopes.

5.14 (a) Imaginary potentials of $^{16}\text{O} + ^{142,144,146}\text{Nd}$ at $E_{\text{lab.}} = 74$ MeV. Solid curve (curve C) in the figure is the total imaginary potential (see text) including the contribution of the states upto 3 MeV excitation of target. (b) The potentials without taking the contribution from first 2^+ state (solid curve). Dotted curve represents the phenomenological imaginary potential (Table 5.3).
5.15 Elastic angular distributions for 16O + 142Nd system. Solid curve shows the theoretical predictions with microscopically calculated potential (see text).................. 137

5.16 Elastic angular distributions for 16O + 144Nd system. Solid curve shows the theoretical predictions with microscopically calculated potential (see text).................. 138

5.17 Elastic angular distributions for 16O + 146Nd system. Solid curve shows the theoretical predictions with microscopically calculated potential (see text).................. 139

5.18 The effect of reorientation coupling on 16O + 142,146Nd systems. The solid curve and the dotted curve shows the effect with and without reorientation coupling on elastic and inelastic channels respectively. 142

5.19 The channels are coupled in the calculations.................. 144

5.20 The effect of transfer channels on the elastic scattering of 16O on 144Nd system at 82 MeV and 70.4 and 65.1 MeV incident energies. The solid curve (curve a) represents the calculations with inelastic and transfer channels and dotted curve (curve b) represents those with inelastic channels only.................. 147

5.21 The effect of transfer channels on the elastic scattering of 16O + 144Nd system at 65.1 MeV incident energy. The dotted curve (curve b) is without transfer coupling and the solid curve (curve a) is with transfer and inelastic excitation.................. 148
5.22 The effect of transfer channels on the inelastic scattering of $^{16}\text{O} + ^{144}\text{Nd}$ system at 82, 70.4 and 65.1 MeV incident energies. The solid curve (curve a) represents the calculations with inelastic and transfer channels and dotted curve (curve b) represents those with inelastic channels only. 149