CONTENTS

CHAPTER 1: INTRODUCTION 1-6

CHAPTER 2: REVIEW OF LITERATURE 7-58

2.1 Bacterial wilt of tomato
2.1.1 Host range and geographical distribution
2.1.2 Economic importance of the disease
2.1.3 Classification
2.1.3.1 Race determination
2.1.3.2 Biovar determination
2.1.4 Traditional detection methods of *Ralstonia solanacearum*
2.1.4.1 Visual inspection
2.1.4.2 Isolation and detection of latent infections
2.1.4.3 Isolation and detection from symptomatic infections
2.1.4.4 Detection through bacterial streaming
2.1.5 Detection of latent and symptomatic infections using serological and molecular techniques
2.1.6 Morphological aspect of the *R. solanacearum*
2.1.7 Genomic organization of the bacteria
2.1.8 Life cycle of *R. solanacearum*
2.1.8.1 Root colonization
2.1.8.2 Plant root cortical infection
2.1.8.3 Vascular cylinder infection and xylem penetration
2.2 Bacterial spot of tomato
2.2.1 Leaves
2.2.2 Fruit
2.2.3 Pathogen characteristics
2.2.4 Pathogen classification and hosts
2.2.5 Disease cycle and epidemiology
2.2.6 Significance
2.3 Interaction of nematode and bacteria
2.4 Biocontrol
2.4.1 Rhizosphere
2.4.1.1 Arbuscular mycorrhizal (AM) fungi
2.4.1.2 Other phosphate solubilizing microorganisms (PSM)
2.4.1.2.1 Siderophore production
2.4.1.2.2 Root colonization
2.4.2 Chitin
2.4.2.1 Chitosan
CHAPTER 3: MATERIALS AND METHODS

3.1 Isolation and identification of root-knot nematodes
3.2 Isolation of bacterial wilt disease bacteria from tomato plants
3.3 Isolation of bacterial spot disease bacteria from tomato plants
3.4 Isolation of AM fungi from the rhizosphere of tomato roots
3.4.1 Staining of AM spores
3.4.2 Identification of AM spores
3.5 Isolation of other phosphate solubilizing microorganisms (PSM)
3.5.1 Isolates obtained from culture collections
3.5.2 Maintenance of phosphate solubilizing microorganisms
3.5.3 Hydrogen cyanide (HCN) production
3.5.4 Indole acetic acid (IAA) production
3.5.5 Phosphate solubilization
3.6 Chitosan obtained from Sigma-Aldrich Chemicals Pvt. Ltd.
3.7 Green house assay test
3.7.1 Effect of bacterial isolates on hatching of root-knot nematodes
3.7.2 Effect of bacterial isolates on penetration of root-knot nematodes
3.7.3 Root colonization by phosphate solubilizing bacterial isolates
3.7.4 Effect of PSM on the bacteria
3.7.5 Root colonization by AM fungi
3.8 Pot experiments
3.8.1 Preparation and sterilization of soil mixture
3.8.2 Growth and maintenance of tomato plants
3.8.3 Preparation of nematode inoculum
3.8.4 Preparation of bacterial inoculum
3.8.5 Preparation of PSM inoculum
3.8.6 Multiplication of AM fungi
3.8.7 Chitosan inoculums
3.8.8 Plant straws and composted organic manures
3.9 Inoculation technique
3.10 Experimental design
3.11 Observations
3.11.1 Estimation of chlorophyll
3.12 Statistical analysis
CHAPTER 4: RESULTS 87-122

4.1 Occurrence of root-knot nematode and pathogenic bacteria

4.2 Occurrence of AM fungi

4.3 Root colonization by phosphate solubilizing microorganisms (PSM)

4.3.1 Effects on hatching and penetration of *M. javanica*

4.3.2 Effects on PSM isolates against pathogenic bacteria

4.3.3 Effects of PSM on seedling growth, phosphate solubilization, IAA and HCN production

4.3.4 Effects of isolates obtained from culture collections against bacteria and nematode

4.4 Pot experiments

CHAPTER 5: DISCUSSION 123-133

CHAPTER 6: SUMMARY AND CONCLUSIONS 134-141

REFERENCES 142-194

PUBLICATION