Index

Introduction

1. Review of literature

1.1 History of Dengue and the current epidemic patterns

1.2 Dengue disease syndromes

1.2.1 Primary dengue infection-Dengue fever (DF)

1.2.2 Anamnestic dengue virus infection-DHF/DSS

1.3 Dengue viruses

1.3.1 Molecular biology

1.3.2 The life cycle

1.3.3 The vector and transmission

1.4 Experimental Dengue vaccine candidates

1.4.1 Virus-based vaccines

1.4.2 Non-viral vaccines

1.5 Pichia pastoris as an expression system

1.5.1 Discovery and significance of the methylotrophic yeasts

1.5.2 AOX1 promoter and expression strategy

1.5.3 Development of Pichia as a heterologous expression system

1.5.4 Salient features of Pichia expression systems

2. Aims and Objectives

3. Materials and Methods

3.1 Materials

3.1.1 Yeast and bacterial strains

3.1.2 Source of HBsAg and Den2E gene

3.1.3 Expression plasmids

3.1.4 Primers

3.1.5 Virus and cell lines

3.1.6 Restriction endonucleases and DNA modifying enzymes

3.1.7 Chemicals, media components, kits and other consumables
3.2 Methods

3.2.1 Isolation of gene encoding dengue virus type 2 envelope protein

3.2.1.1 Virus culture
3.2.1.2 Virus purification
3.2.1.3 Viral RNA isolation
3.2.1.4 RT-PCR

3.2.2 Construction of recombinant plasmids

3.2.2.1 Generation of fusion constructs harbouring genes encoding Den2E and HBsAg
3.2.2.2 Tagging Den2E as well as Den2E-HBsAg hybrid protein with 6X-His
3.2.2.3 Preparation and transformation of competent DH5α cells

3.2.3 Generation of recombinant Pichia pastoris clones

3.2.3.1 Transformation of Pichia pastoris by electroporation
3.2.3.2 PCR analysis of Pichia transformants

3.2.4 Shake flask cultures

3.2.4.1 Cultivation of Pichia pastoris
3.2.4.2 Preparation of soluble cell extracts

3.2.5 Purification strategy

3.2.5.1 Ni-NTA column chromatography for His tagged proteins
3.2.5.2 Purification of the recombinant Den2E-HBsAg hybrid protein

3.2.6 Analytical methods

3.2.6.1 In vitro transcription and translation
3.2.6.2 Northern analysis
3.2.6.3 Polyacrylamide Gel Electrophoresis of proteins
3.2.6.4 Cesium chloride gradient analysis
3.2.6.5 Gel filtration analysis
3.2.6.6 Protein estimation

3.2.7 Immunological analysis

3.2.7.1 Immunoblot assay
3.2.7.2 Dot-blot assay
3.2.7.3 ELISA for soluble recombinant Den2E-HBsAg hybrid protein
3.2.7.4 ELISA for soluble recombinant His tagged proteins
4. Results

4.1 *Pichia pastoris* as a host for the expression of dengue virus envelope protein

4.2 Isolation of Den2E and HBsAg genes

4.3 Expression and purification of fusion proteins derived from *Den2E* and *HBsAg*

4.3.1 Generation of fusion constructs

4.3.2 *In vitro* expression analysis of the chimeric gene constructs

4.3.3 Intracellular expression of the gene fusions in *Pichia*

4.3.4 Optimization of Den2E-HBsAg expression in shake-flask cultures

4.3.5 Purification of recombinant Den2E-HBsAg hybrid protein

4.3.6 Conclusions

4.4 Expression and purification of 6X-His Tagged proteins

4.4.1 Generation of 6X-His-tagged Den2E containing expression constructs

4.4.2 *In vitro* expression analysis of the recombinant proteins

4.4.3 Intracellular expression of recombinant 6X-His-tagged Den2E in *P. pastoris*

4.4.4 Purification of recombinant 6X-His-tagged Den2E protein

4.4.5 Conclusions

4.5 Characterization of recombinant proteins

4.5.1 Recombinant Den2E-HBsAg and 6X-Den2E proteins expressed in *P. pastoris* form high molecular weight aggregates

4.5.2 Den2E-HBsAg hybrid protein, but not 6X-His-Den2E protein, assembles into VLPs
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.3</td>
<td>The hybrid VLPs elicit immune responses against both components</td>
<td>101</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Antibodies elicited by the hybrid protein are comparatively</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>more efficient in recognizing dengue virus</td>
<td></td>
</tr>
<tr>
<td>4.5.5</td>
<td>Conclusions</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Discussion</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Publications</td>
<td>135</td>
</tr>
</tbody>
</table>